
The Global Array Programming Model

for High Performance Scienti�c

Computing

J. Nieplocha, R.J. Harrison and R.J. Little�eld

Paci�c Northwest Laboratory

SIAM News, August/September 1995

Motivated by the characteristics of current parallel architectures, we have de-
veloped an approach to the programming of scalable scienti�c applications that
combines some of the best features of message-passing and shared-memory pro-
gramming models. Two assumptions permeate our work. The �rst is that most
high performance parallel computers have, and will continue to have, physically
distributed memories with non-uniform memory access (NUMA) timing char-
acteristics. NUMA machines work best with application programs that have a
high degree of locality in their memory reference patterns. The second assump-
tion is that extra programming e�ort is, and will continue to be, required to
construct such applications. Thus, a recurring theme in our work is the develop-
ment of techniques and tools that minimize the extra e�ort required to construct
application programs with explicit control of locality.

There are signi�cant tradeo�s among the important considerations of portab-
ility, e�ciency, and ease of coding. The message-passing programming model is
widely used because of its portability. Some applications, however, are too com-
plex to be coded in a message-passing mode, if care is to be taken to maintain
a balanced computation load and avoid redundant computations. The shared-
memory programming model simpli�es coding, but it is not portable and often
provides little control over interprocessor data transfer costs. Other more recent
parallel programming models, represented by such languages and facilities as
HPF[1], SISAL[2], PCN[3], Fortran-M[4], Linda[5], and shared virtual memory,
address these problems in di�erent ways and to varying degrees. None of these
models represents an ideal solution.

Global Arrays (GAs), the approach described here, lead to both simple cod-
ing and e�cient execution for a class of applications that appears to be fairly
common. The key concept of a GA model is that it provides a portable interface
through which each process in a MIMD parallel program can independently,
asynchronously, and e�ciently access logical blocks of physically distributed

1

on-chip cache

registers

main memory

off-chip cache

virtual memory
sp

ee
d

ca
pa

ci
ty

Figure 1: The memory hierarchy of a typical NUMA architecture.

matrices, with no need for explicit cooperation by other processes. In this re-
spect, it is similar to the shared-memory programming model. In addition,
however, the GA model acknowledges that more time is required to access re-
mote data than local data, and it allows data locality to be explicitly speci�ed
and used. In these respects, it is similar to message passing.

NUMA Architecture

The concept of NUMA is important even to the performance of modern (se-
quential) personal computers or workstations. On a standard RISC workstation,
for instance, good performance of the processors results from algorithms and
compilers that optimize usage of the memory hierarchy. The memory hierarchy
is formed by registers, on-chip cache, o�-chip cache, main memory, and virtual
memory (see Figure 1).

If the programmer ignores this structure and constantly
ushes the cache or,
even worse, thrashes the virtual memory, performance will be seriously degraded.
The classic solution to this problem is to access data in blocks small enough to
�t in the cache and then ensure that the algorithm makes su�cient use of the
encached data to justify the costs of moving the data.

To the NUMA hierarchy of sequential computers,parallel computers add at
least one extra layer: remote memory. Access to remote memory on distributed-
memory machines is accomplished through message passing. Message passing,
in addition to the required cooperation between sender and receiver that makes
this programming paradigm di�cult to use, introduces degradation of latency
and bandwidth in the accessing of remote, as opposed to local, memory.

Scalable shared-memory machines,i.e., architecturally distributed-memory
machines with hardware support for shared-memory operations (for example, the
KSR-2 or the Convex Exemplar), allow access to remote memory in the same
fashion as to local memory. However, this uniform mechanism for accessing
local and remote memory should be seen only as a programming convenience|

2

on both shared- and distributed-memory computers, the latency and bandwidth
for accessing remote memory are signi�cantly larger than for local memory and
therefore must be incorporated into performance models.

If we think about programming of MIMD parallel computers (either shared-
or distributed-memory) in terms of NUMA, then parallel computation di�ers
from sequential computation only in terms of concurrency. By focusing on
NUMA, we not only have a framework in which to reason about the performance
of our parallel algorithms (i.e., memory latency, bandwidth, data and reference
locality), we also conceptually unite sequential and parallel computation.

Global Array Model

The GA programming model is motivated by the NUMA characteristics of cur-
rent parallel architectures. By removing the unnecessary processor interactions
required to access remote data in message-passing paradigm, the GA model
greatly simpli�es parallel programming and is similar in this respect to the
shared-memory programming model. However, the GA model also acknow-
ledges that it is more time consuming to access remote data than local data (i.e.,
remote memory is yet another layer of NUMA), and it allows data locality to
be explicitly speci�ed and used. Advantages of the GA model over a shared-
memory programming model include its explicit distinction between local and
remote memory and the availability of two distinct mechanisms for accessing
local and remote data. Global arralys, instead of hiding the NUMA charac-
teristics, expose them to the programmer and make it possible to write more
e�cient and scalable parallel programs.

The current GA programming model can be characterized as follows:
� MIMD parallelism is provided via a multiprocess approach, in which all

non-GA data, �le descriptors, and so on are replicated or unique to each
process.

� Processes can communicate with each other by creating and accessing
GA distributed matrices, as well as (if desired) by conventional message
passing.

� Matrices are physically distributed block-wise, either regularly or as the
Cartesian product of irregular distributions on each axis.

� Each process can independently and asynchronously access any two- di-
mensional patch of a GA distributed matrix, without requiring cooperation
from the application code in any other process.

� Several types of access are supported, including \get," \put," \accumu-
late" (
oating-point sum-reduction), and \get and increment" (integer).
This list can be extented as needed.

� Each process is assumed to have fast access to some portion of each distrib-
uted matrix, and slower access to the remainder. These speed di�erences
de�ne the data as being local or remote, respectively. However, the numeric

3

di�erence between local and remote memory access times is unspeci�ed.
� Each process can determine which portion of each distributed matrix is

stored locally. Every element of a distributed matrix is guaranteed to be
local to exactly one process.

This model di�ers from other common models as follows. Unlike HPF, it
allows task-parallel access to distributed matrices, including reduction into over-
lapping patches. Unlike Linda[5], it e�ciently provides for sum-reduction and
access to overlapping patches. Unlike shared-virtual-memory software facilit-
ies,the GA paradigm requires explicit library calls to access data but avoids
the overhead associated with the maintenance of memory coherence and hand-
ling of virtual page faults. The GA implementation guarantees that all of the
required data for a patch can be transferred at the same time. Unlike active
messages[6], the GA model does not incorporate the concept of interprocessor
cooperation and can thus be implemented e�ciently[7] even on shared-memory
systems. Finally, unlike some other strategies based on polling, task duration is
relatively unimportant in programs that use GAs, which simpli�es coding and
makes it possible for GA programs to exploit standard library codes without
modi�cation.

Global Array Toolkit

This GA interface has been designed in the light of emerging standards. In
particular, High Performance Fortran (HPF) will certainly provide the basis for
future standards de�nition for distributed arrays in Fortran. The operations that
provide the basic functionality (create, fetch, store, accumulate, gather, scatter,
data-parallel operations) all can be expressed as single statements in Fortran-90
array notation and with the data-distribution directives of HPF. The GA model
is, however, more general than that of HPF, which currently precludes the use
of such operations in MIMD (task-parallel) code.

Supported Operations

Each GA operation may be categorized as either an implementation- dependent
primitive operation or an operation that has been constructed in an implementation-
independent fashion from primitive operations. Operations also di�er in their im-
plied synchronization. Interfaces to third-party libraries provide a �nal distinction.
The following primitive operations are invoked collectively by all processes:
� create an array, controlling alignment and distribution;
� create an array following a provided template (existing array);
� destroy an array;
� synchronize all processes.
The following primitive operations can be invoked in true MIMD style by

any process with no implied synchronization with other processes and, unless

4

otherwise stated, with no guaranteed atomicity:
� fetch, store, and atomic accumulate into rectangular patch of a two-dimensional

array;
� gather and scatter array elements;
� atomic read and increment array elements;
� inquire about the location and distribution of the data;
� directly access local elements of array to support and/or improve perform-

ance of application-speci�c data-parallel operations.
The following set of BLAS-like data-parallel operations currently available

in GAs can easily be extended (e�cient implementation can be done in an
architecture-independent fashion on top of the GA primitive operations):
� vector operations (e.g., dot-product or scale) optimized by means of direct

access to local data to avoid communication;
� matrix operations (e.g., symmetrize) optimized through direct access to

local data to reduce communication and data copying;
� matrix multiplication.
The vector, matrix multiplication, copy, and print operations exist in two

versions that operate on either entire array(s) or speci�ed sections of array(s).
The array sections in operations that involve multiple arrays do not have to be
conforming{the only requirements are that they must be of the same type and
contain the same number of elements.

Functionality provided by third-party libraries{standard and generalized real
symmetric eigensolvers and linear equation solvers(interface to ScaLAPACK){is
made available by using the GA primitives to perform necessary data rearrange-
ment. The O(N2) cost of such rearrangements is observed to be negligible in
comparison to that of O(N3) linear algebra operations. These libraries can in-
ternally use any form of parallelism appropriate to the computer system, such
as cooperative message-passing or shared-memory.

Sample Code Fragment

The following code fragment uses the Fortran interface to create an n�m double-
precision array, blocked in at least 10� 5 chunks; after zeroing, a patch is �lled
from a local array. Unde�ned values are assumed to be computed elsewhere.
The routine ga create() returns the variable g a as a handle to the global array
for subsequent references to the array.

integer g_a, n, m, ilo, ihi, jlo, jhi, ldim

double precision local(1:ldim,*)

c

call ga_create(MT_DBL, n, m, `A', 10, 5, g_a)

call ga_zero(g_a)

call ga_put(g_a, ilo, ihi, jlo, jhi, local, ldim)

5

This code is very similar in functionality to the following HPF-like state-
ments:

integer n, m, ilo, ihi, jlo, jhi, ldim

double precision a(n,m), local(1:ldim,*)

!hpf$ distribute a(block(10), block(5))

c

a = 0.0

a(ilo:ihi,jlo:jhi)=local(1:ihi-ilo+1,1:jhi-jlo+1)

The di�erence is that this single HPF assignment would be executed in a
data-parallel fashion, whereas the global array ga put operation would be ex-
ecuted in MIMD parallel mode, with each process able to reference di�erent
array patches.

Supported Platforms and Availability

The public-domain GA toolkit is supported on a wide range of distributed- and
shared-memory computer systems, including:

1. Distributed-memory, message-passing parallel computers with interrupt-
driven communications or active messages (Intel iPSC/860, Delta and Par-
agon, IBM SP-1/2).

2. Networks of uniprocessor and multiprocessor Unix workstations.

3. Shared-memory parallel computers (KSR-1/2, Cray T3D, SGI).

The GA toolkit is available via anonymous ftp on ftp.pnl.gov in the dir-
ectory pub/global. Further information is provided on the WWW at the URL,
http://www.emsl.pnl.gov:2080/docs/global/ga.html.

Applications

Most applications of the GA toolkit have been in the area of computational chem-
istry, in determinations of the electronic structures of molecules or crystalline
chemical systems. These calculations, which can predict many chemical proper-
ties that are not directly observed experimentally, account for a large fraction
of the supercomputer cycles currently used for computational chemistry. All
of these methods, of which the iterative self consistent �eld (SCF) method [8]
is the simplest, compute approximate solutions to the nonrelativistic electronic
Schr�odinger equation.

6

As an example of the programming simpli�cations and performance improve-
ments that can be realized with GAs, we consider the parallel SCF application
here is slightly more detail. Full details and a recent literature survey can be
found in [9, 10].

The kernel of the SCF calculation is the contraction of a large, sparse four-
index matrix (electron-repulsion integrals) with a two-index matrix (the elec-
tronic density) to yield another two-index matrix (the Fock matrix). The irreg-
ular sparsity and the available symmetries of the integrals drive the calculation.
The dimensions of both matrices are determined by the size of an underlying
basis set (N � 103). The number of integrals scales between O(N2) and O(N4)
depending on the nature of the system and level of accuracy required. Integrals
are most e�ciently computed in batches, and each batch connects up to six
blocks of the density matrix with the corresponding blocks of the Fock matrix.
The cost of evaluating these batches can vary by a factor of more than 1000,
which causes a load-balancing problem.

The two previous signi�cant distributed-data algorithms both used explicit
message passing. In the systolic loop algorithm of Colvin et al. [10], the best
possible execution time is no better than O(N2

basis
). Overall e�ciencies of ap-

proximately 50% were obtained on 256 processors of an nCUBE-2. The most
e�cient explicit message-passing algorithm is that of Furlani and King [10], who
implemented rather complicated distributed-matrix schemes with polling. The
overhead assciated with communication and waiting for responses to requests for
access to the density matrix was reduced by explicit double-bu�ering and asyn-
chronous prefetching. This approach scales well, but the polling causes high
latencies in access to the distributed matrices, thus requiring the introduction of
the additional complexities of prefetching.

Given the high degree of complexity of these message-passing algorithms,
and the simplicity of SCF as compared with other ab initio algorithms, we have
been seeking more appropriate programming models; the GA model is the cur-
rent result. Our latest SCF program, which has been developed on top of the
GA toolkit, is very simple, and all computational steps with complexity greater
than O(Natom) have been parallelized. The four nested loops over the unique
integrals are stripmined into blocks, similar in spirit to Furlani and King. Geo-
metric decomposition permits the use of sparsity for reducing both computation
and references to global data. Assignment of multiple atom quartets to a task
improves the caching of reads of the density matrix and accumulation into the
Fock matrix, although too large a task size degrades load balancing. All tasks
are dynamically assigned, which is made possible by the one-sided data access
provided by GAs. The GA visualization program, which demonstrates access
patterns to distributed arrays, was instrumental in designing an e�cient task-
scheduling strategy for the SCF program [7].

A simple performance model predicts a constant e�ciency of about 99%
for the Fock matrix construction for up to O(N2

atom
) processors (for extended

molecular systems), at which point load imbalance will degrade performance. In

7

a modestly sized calculation (731 basis functions) using 512 processors of the
Intel Delta, we obtained a speedup of 496 (97% e�ciency) for the Fock-matrix
construction.

Conclusions

Global Arrays are a new parallel programming environment for the develop-
ment of scienti�c applications on massively parallel computers. The GA model
provides a portable interface through which each process in a MIMD parallel
program can e�ciently access logical blocks of physically distributed matrices,
with no need for explicit cooperation by other processes (or processors) where
the data resides.

For applications of certain types, the GA model provides a better combination
of simple coding, high-level e�ciency, and portability than do do other models.
The applications that motivated the development of GA are characterized by (1)
the need to access relatively small blocks of very large matrices (thus requiring
block-wise physical distribution); (2) wide variation in task execution time (thus
requiring dynamic load balancing, with attendant unpredictable data reference
patterns); and (3) a fairly large ratio of computation to data movement (thus
making it possible to retain a high e�ciency while accessing remote data on
demand). The GA model provides good support for many areas of computational
chemistry, especially electronic structure codes. It also appears promising for
such application domains as global climate modeling, in which the codes are
often characterized by both spatial locality and load imbalance.

References

[1] High Performance Fortran Forum, High Performance Fortran Language
Speci�cation, Version 1.0, Rice University, 1993.

[2] J.A. Stephen and R.R. Oldehoeft, HEP SISAL: Parallel Functional

Programming, in Parallel MIMD Computation: HEP Supercomputer and
Its Applications, pp.123{150, ed. J.S. Kowalik, The MIT Press, Cambridge,
MA, 1985.

[3] I.T. Foster, R. Olson and S. Tuecke, Productive Parallel Program-

ming: The PCN Approach, Scienti�c Programming, pp.51{66, 1(1992).

[4] I.T. Foster and K.M. Chandy, Fortran M: A Language for Modular

Parallel Programming, Argonne National Laboratory, preprint MCS-P327-
0992, 1992.

[5] N. Carriero and D. Gelernter, How To Write Parallel Programs, A

First Course, The MIT Press, Cambridge, MA, 1990.

8

[6] T. von Eicken, D.E. Culler, S.C. Goldstein and K.E. Schauser,
Active messages: A mechanism for integrated communications and compu-

tation, Proc. 19th Ann. Int. Symp. Comp. Arch., pp. 256-266, 1992.

[7] J. Nieplocha, R.J. Harrison and R.J. Littlefield, Global Arrays:
A Portable \Shared-Memory" Programming Model for Distributed Memory

Computers, Proc. Supercomputing 1994, IEEE Computer Society Press,
pp. 340{349, 1994.

[8] A. Szabo and N.S. Ostlund,Modern Quantum Chemistry: Introduction

to Advancd Electronic Structure Theory, 1st Ed. Revised, McGraw-Hill,
Inc., New York, 1989.

[9] R.J. Harrison, M.F. Guest, R.A. Kendall, D.E. Bernholdt, A.T.

Wong, M.S. Stave, J.L. Anchell, A.C. Hess, R.J. Littlefield,

G.I. Fann, J. Nieplocha, G.S. Thomas, D. Elwood, J. Tilson, R.L.

Shepard, A.F.Wagner, I.T. Foster, E. Lusk and R. Stevens, Fully
Distributed Parallel Algorithms|Molecular Self Consistent Field Calcula-

tions, J. Comp. Chem., in press.

[10] R.J. Harrison, R.L. Shepard, Ab Initio Molecular Electronic Structure

on Parallel Computers, Annu. Rev. Phys. Chem. 45: 623-58, 1994.

9

