
Abstract

All scalable parallel computers feature a memory hierarchy, in which some locations are
“closer” to a particular processor than others. The hardware in a particular system may
support a shared memory or message passing programming model, but these factors
effect only the relative costs of local and remote accesses, not the system’s fundamental
Non-Uniform Memory Access (NUMA) characteristics. Yet while the efficient
management of memory hierarchies is fundamental to high performance in scientific
computing, existing parallel languages and tools provide only limited support for this
management task. Recognizing this deficiency, we propose abstractions and
programming tools that can facilitate the explicit management of memory hierarchies by
the programmer, and hence the efficient programming of scalable parallel computers.
The abstractions comprise local arrays, global (distributed) arrays, and disk resident
arrays located on secondary storage. The tools comprise the Global Arrays library,
which supports the transfer of data between local and global arrays, and the Disk
Resident Arrays (DRA) library, for transferring data between global and disk resident
arrays. We describe the shared memory NUMA model implemented in the tools, discuss
extensions for wide area computing environments, and review major applications of the
tools, which currently total over one million lines of code.

1 Introduction

Chuck Seitz, a pioneer in parallel computing, named parallelism and memory as the two
fundamental issues in computer architecture [1]. However, the programming languages
and tools developed for parallel scientific programming during the last two decades have
focused primarily on parallelism, and more specifically on the issues of control flow,
communication structures, and load balancing. Memory-related issues such as data
locality have been largely ignored.

EXPLICIT MANAGEMENT OF MEMORY HIERARCHY

Jarek Nieplocha Robert Harrison Ian Foster
Pacific Northwest National Laboratory Argonne National Laboratory
Richland, WA 99352, USA Argonne, IL 60439, USA
<j_nieplocha,rj_harrison@pnl.gov> <itf@mcs.anl.gov>

2

Nevertheless, while issues relating to parallelism are important, the exploitation of
data locality and the effective use of memory hierarchy are critical to efficient parallel
execution. As Van der Velde [2] indicates: “While control flow issues are certainly
present, they are relatively straightforward in concurrent scientific computing. The more
difficult issue by far is data locality, the key to obtaining high-performance programs.
Current computer languages offer little or no support for introducing data distribution
that promote locality. This is the primary reason why scientific programs are messy.”

Virtually all scalable architectures possess nonuniform memory access
characteristics that reflect their multi-level memory hierarchies. These hierarchies
typically comprise processor registers, multiple levels of cache, local memory, and
remote memory. In future systems, both the number of levels and the cost (in processor
cycles) of accessing deeper levels can be expected to increase [3,4].

Many parallel languages and tools assume a flat memory model, in which the
physical location of data is not represented explicitly, for instance Fortran-90, PCN [5],
or Data Parallel C [6] are examples of such languages. However, this simple memory
model hinders the understanding and tuning of parallel program performance. The
variable cost of accessing data that resides at different memory levels cannot be ignored
if we are to construct efficient parallel programs. The systems that provide some support
for management of locality include High Performance Fortran (HPF) [7], the Message
Passing Interface (MPI) [8], Split-C [9], and Compositional C++ (CC++) [10]. HPF
augments Fortran 90’s flat memory model with data distribution directives, which can
provide an implicit specification of locality. However, HPF can specify only data-parallel
algorithms, and requires advanced compiler technology. MPI distinguishes local and
remote memory explicitly, but requires that remote memory access be performed by
means of explicit send calls with matching receives. Split-C and CC++ use global
pointers to represent references to remote data.

In this paper we discuss the issues of memory hierarchy and data locality in
common programming models and describe a set of tools for development of scalable
scientific MIMD algorithms that address these issues. The tools have been designed
based on the assumption that current as well as future-generation scalable architectures
will possess NUMA characteristics, regardless of the programming paradigm(s)
supported directly by the hardware such as message-passing or shared-memory.
Therefore, the primary focus has been on the development of abstractions for the
management and transfer of data between different layers of the NUMA memory
hierarchy, namely local memory, remote memory, and high-performance secondary
storage. The abstractions comprise local arrays, global (distributed) arrays, and disk
resident arrays located on secondary storage. The tools comprise the Global Arrays
library, which supports the transfer of data between local and global arrays, and the Disk
Resident Arrays (DRA) library, for transferring data between global and disk resident
arrays. They expose to the programmer the NUMA characteristics of modern high-
performance computer systems, and by recognizing the communication overhead for
remote data transfer, promote data reuse and locality of reference.

3

2 Memory Hierarchy

Hierarchical memory structures appear in modern computers as a result of economic and
physical constraints. Faster memory components tend to be less dense and hence more
expensive than slower components. For example, for comparable fabrication technology,
DRAM chips have 16 times more capacity (density) than SRAM chips, but a cycle time
that is 8 to 16 times slower [3]. Capacity and access time both increase yet again when
we consider secondary storage (disk). Hence, system designers make cost-performance
trade-offs by using the faster but more expensive SRAM memory to cache frequently
used values, DRAM for slower and much larger main memory, and disk for virtual
memory. Because access time is also correlated with physical distance, due to
fundamental laws of physics (the speed of light), faster components are placed nearer the
processor; this technique accentuates the phenomenon that access time depends on the
distance of the memory component from the processor. The result is the typical
workstation memory hierarchy, comprising registers, on-chip cache, off-chip cache, main
memory, and virtual memory. In massively parallel processing (MPP) systems, memory
located on other processors introduces one or more additional layers in the hierarchy,
producing what is called the Non-Uniform Memory Access architecture (Figure 1).

The effectiveness of the NUMA architecture depends critically on the principle of
locality of reference which says that programs tend to reuse data and instructions that
they have most recently used. In an ideal situation, this principle means that the data and

Figure 1: NUMA memory hierarchy in a scalable MPP system.

registers

on-chip cache

off-chip cache

main memory

remote main memory
ca

pa
ci

ty

sp
ee

d

cache

processor

main memory

on-chip cache

registers

CPU

4

instructions required by the processor are almost always located in the small amount of
fast memory (cache) that the designer places nearby the processor. Hence, a computer in
which most memory has slow memory costs can operate at fast memory speeds.
However, if locality is not achieved, we can encounter situations in which many memory
references require that data be moved into cache from main memory--or even from
secondary storage in the case of virtual memory. Performance is then seriously degraded.

In an attempt to maximize locality of reference, and hence performance, various
algorithms and compilers have been developed that seek to optimize memory hierarchy
usage. A classic technique is to access data in blocks small enough to fit in the cache or
main memory. If an algorithm makes sufficient use of the data contained in these blocks,
data movement costs are then justified.

As we indicated above, MPP systems extend the NUMA memory hierarchy by
introducing the concept of “remote” memory: memory associated with another processor.
Physical distance means that this memory takes longer to access that “local” memory,
regardless of the hardware mechanisms which are used to perform remote memory
access. Access to remote memory on distributed memory machines is predominantly
accomplished through message passing. Message passing requires cooperation between
sender and receiver which make this programming paradigm difficult to use. Even so-
called scalable shared-memory machines, such as the Kendall Square Research KSR-2 or
the Convex SPP-1200, are actually distributed-memory machines with hardware support
for shared-memory primitives. This hardware support allow programs to specify remote
memory accesses with the same load and store operations used for local memory
accesses. However, this uniform mechanism for accessing both local and remote memory
is only a programming convenience--on both shared and distributed memory scalable
computers, the cost of remote memory access is significantly higher than for local
memory, and therefore must be incorporated into performance models and taken into
account when developing scalable applications.

If we think about the programming of MIMD parallel computers (either shared or
distributed memory) in terms of management of NUMA memory hierarchy, then parallel
computation differs from sequential computation only in the essential difference of
concurrency, rather than in nearly all aspects. By focussing on NUMA we not only have
a framework in which to reason about the performance of our parallel algorithms (i.e.,
memory latency, bandwidth, data and reference locality), we also conceptually unite
sequential and parallel computation.

3 Programming Models

The two predominant programming models for MIMD concurrent computing are
message passing and shared memory. Message passing, which has roots in the CSP
model [11], has been implemented in many flavors over the last two decades and recently
standardized in the Message Passing Interface (MPI) [8]. One-sided communication is an
extension of this model that has proved useful in some irregular problems. Shared
memory has been implemented in many forms both in hardware and software [12]. High
Performance Fortran (HPF) [13] is an emerging standard for developing data-parallel

5

codes, and can be thought of as an implicit, compiler-based approach to shared memory
programming. We now review differences between these models with respect to data
locality, ease of use, and performance issues.

3.1 MESSAGE PASSING

Message passing assumes a distributed-memory model in which distinct processes each
have their own “local” data, and share data only through cooperative communication. A
process can access its own local data directly, but access of remote data requires the
cooperation of the process that owns the data. The remote process must send the required
data in an explicit message, and hence must know which piece of data is needed by which
process and when. This requirement makes the message passing model hard to use for
irregular problems and applications that use dynamic load balancing. This is because the
coordination of large number of processes that operate on uneven chunks of data or that
require access to remote data at irregular time intervals increases algorithmic complexity
and magnifies associated programming effort.

A message passing operation not only transfers data but also synchronizes sender
and receiver. Asynchronous (nonblocking) send/receive operations can be used to diffuse
the synchronization point, but cooperation between sender and receiver is still required.
The synchronization effect is beneficial in certain classes of algorithms such as parallel
linear algebra where data transfer usually indicates completion of some computational
phase; in these algorithms, the synchronizing messages can often carry the results
produced in the preceding computational phase. For other algorithms, synchronization
constitutes an unnecessary and undesirable effect and a source of performance
degradation [14]. The time that each process wastes waiting for a rendezvous can be
readily minimized in certain regular problems, by performing other computation;
however, in other problems, this optimization effort can require extensive programming
effort and complexity that usually compromises code clarity and ultimately increases
software maintenance costs.

Despite programming difficulties, the message-passing paradigm’s memory model
maps well to the distributed-memory architectures used in scalable MPP systems.
Because the programmer must explicitly control data distribution and is required to
address data locality issues, message-passing applications tend to execute efficiently on
such systems. However, on systems with multiple levels of remote memory, for example
networks of SMP workstations or metacomputers, the message-passing model’s
classification of main memory as local or remote can be inadequate. For example, on
SMP workstations connected with Ethernet, message-passing latency can vary by two to
three orders of magnitude according to whether processes are on the same or different
machines. While some algorithms are capable of exploiting data locality at different
levels of remote memory by decomposing the data in a fashion that minimizes associated
cost of communication across the network, unfortunately, most message-passing
libraries, including MPI, do not provide locality information about process mapping to
the hardware and associated variable data transfer cost.

6

3.2 SHARED MEMORY

In the shared-memory programming model, data is located either in “private”
memory (accessible only by a specific process) or in “global” memory (accessible to all
processes). In some shared-memory systems, global memory is accessed in the same
manner as local memory. Systems based on this approach may rely on hardware or
operating support to recognize load and store operations that reference non-local memory
(e.g., KSR-2, Convex-SPP) or use purely software-based approaches, as in the various
distributed shared memory libraries, for example Treadmarks [15] or Midway [16]. In
other shared-memory systems, global memory is accessed by using distinguished
mechanisms, such as language constructs [17,9,10], special user-defined operations [18],
or library functions [19,20]. Regardless of the implementation, the shared-memory
paradigm eliminates the synchronization that is required when message passing is used to
access shared data.

A disadvantage of many shared-memory models is that they do not expose the
NUMA memory hierarchy of the underlying distributed-memory hardware. Instead, they
present a flat view of memory making it hard for programmers to understand how data
access patterns effect the application performance or to exploit data locality. Hence,
while programming effort involved in application development tends to be much lower
than in the message-passing approach, achieved performance is usually less
competitive.These shortcomings are not uncommon among vendors of shared-memory
hardware. For example, KSR provided no software support to distinguish between
memory subpages located on the same and different rings despite significant latency and
bandwidth differences [21]. As a notable exception, the Convex-SPP supports a view of
near shared memory (within the hypernode) andfar shared memory (remote hypernode)
which better reflects the memory hierarchy of the system [22].

3.3 HIGH PERFORMANCE FORTRAN

High Performance Fortran (HPF) [13] represents an alternative approach to data
distribution and data locality management, in which these attributes of a parallel program
are specified implicitly, via compiler directives. HPF programs use Fortran 90 array
notation and other statements (e.g., FORALL statements and INDEPENDENT
directives) to specify data-parallel operations. Data distribution is specified separately,
via directives that describe array decomposition (e.g., DISTRIBUTED, BLOCK,
CYCLIC) and alignment (e.g., ALIGN, REALIGN). HPF compilers use this data
distribution information to determine placement of data and computation, and hence the
data locality properties of the program.

HPF provides a particularly high-level programming model which, when effective,
can simplify parallel programming. However, sophisticated compiler technology is
required to generate efficient programs. In addition, the range of problems that can be
expressed in HPF is restricted by the lack of support for certain features required in
dynamic, task-parallel programs, such as random access to regions of distributed arrays
from within a MIMD parallel subroutine call-tree, and reduction into overlapping regions
of distributed arrays. We also note that HPF does not address explicitly the problem of

7

data placement and problem decomposition in more complex memory hierarchies, such
as clusters of SMPs.

3.4 ONE-SIDED COMMUNICATION

Traditional message passing is insufficient for many applications whose communication
patterns and work distribution are determined dynamically at run-time. These
applications are better supported by a one-sided communication model in which
processes can access remote data without the explicit cooperation of processes that own
that data. One-sided communication assumes that a process can access data on a remote
node

• asynchronously,

• without explicit cooperation of the process on the remote node, and

• with latency and overhead costs that are comparable to standard send and receive
operations.

One-sided communication can be seen as an extension of the message-passing
model in which only one side specifies the communication parameters usually present in
point-to-point message passing operations, including origin, target process, number of
bytes, and memory addresses for origin and target locations. The distributed memory
view of this model maps very well to the memory hierarchy of MPPs. While the high-
performance implementations of this model are becoming available, the MPI Forum is
currently working on standardizing the one-sided communication interface to be included
in MPI-2 [23].

4 Tools For Explicit Management of Memory Hierarchy

In an attempt to merge better features of message passing and shared memory models we
developed a set of tools that provide explicit support for management of memory
hierarchy and provide one-sided access to distributed data structures. The development
of these tools have been motivated by algorithmic requirements of theoretical chemistry
electronic structure computations (dynamic load balancing with up to three orders of
magnitude variation in task size, blocked access patterns to distributed dense arrays) and
NUMA characteristics of high-performance computers [19, 24]. The Global Arrays
toolkit implements shared-memory NUMA model for distributed dense arrays. Disk
Resident Arrays [25] and Mirrored Arrays [26] are extensions of this model to the
secondary storage and metacomputing environments both of which are characterized by
the increased latency and reduced bandwidth.

In general, the shared-memory NUMA model merges features of other existing
models:

• a distributed memory view of the message passing model,

• a one-sided access to remote data in the spirit of the shared memory paradigm,

• an explicit control over data distribution,

• a data locality, distribution and mapping information,

8

• recognition of memory hierarchy and performance differences in access to distinct
layers in memory hierarchy, and

• includes as a subset message passing (for example to support algorithms that require
synchronization on data transfer).

4.1 GLOBAL ARRAYS

The Global Arrays library [19,24] implements a shared-memory programming model in
which data locality is managed explicitly by the programmer. This management is
achieved by explicit calls to functions that transfer data between a global address space (a
distributed array) and local storage. In this respect, the GA model has similarities to
distributed shared-memory models that provide an explicit acquire/release protocol
[16,17]. However, the GA model acknowledges that remote data is slower to access than
local data and allows data locality to be explicitly specified and hence managed. The GA
model exposes to the programmer the NUMA characteristics of modern high-
performance computer systems, and by recognizing the communication overhead for
remote data transfer, it promotes data reuse and locality of reference. The GA library
allows each process in a MIMD parallel program to access, asynchronously, logical
blocks of physically distributed matrices, without the need for explicit cooperation by
other processes. This functionality has proved useful in numerous computational
chemistry applications, and today many programs, totaling over one million lines of
code, make use of GA with NWChem [27] alone exceeding 400,000 lines. One of the
primary design goals for GA was to make the development of scalable applications
easier. The applications experience indicates that the toolkit meets these expectations
thanks to its high-level array-oriented interface combined with the one-sided access to
the shared data and locality management features.

The GA provides extensive support for controlling array distribution and accessing
locality information. Global arrays can be created by:
• allowing the library to determine array distribution,
• specifying decomposition only for one array dimension and allowing the library to

determine the others,
• specifying the distribution block size for all dimensions, and
• specifying irregular distribution as a cartesian product of irregular distributions for

each axis.
The distribution and locality information is available through library operations

that:
• specify the array section held by a given process,
• specify which process owns a particular array element, and
• return list of processes and blocks of data for the given section of an array (see the

following example and Figure2).
In the following Fortran code fragment, a two-dimensional array of integers (type

handleMT_INT) is created by specifying array dimensions 100x100, array name “array
A”, and requesting regular distribution in both dimensions (block size “-1”). The array
handle needed for future references to the array is returned in variableg_a. After an array

9

is created, each process determines the coordinates of the array section it holds, described
in Fortran 90 notation as (ilo:ihi, jlo:jhi), by calling ga_distribution. Next, with the
ga_locate_region operation evenly numbered processes inquire distribution information
for a section of array that augments the section they own from North and South while odd
numbered processes do the same for the section augmented from East and West. The
variablenp returns the number of processes that hold data in the specified section and
arrayplist returns process Id and the corresponding subsection coordinates, see Figure 2.

integer g_a, me, ilo, ihi, jlo, jhi, n, np, plist(1:5,*)

parameter (n=100)

c

call ga_create(MT_INT, n, n,‘array A’, -1, -1, g_a)

me = ga_nodeid()

call ga_decomposition(g_a, me, ilo, ihi, jlo, jhi)

if(Mod(me,2) .eq.0) then

call ga_locate_region(g_a,MAX(ilo-1,1),MIN(ihi+1,n), jlo,jhi,plist, np)

else

call ga_locate_region(g_a,ilo,ihi,MAX(jlo-1,1),MIN(jhi+1,n), plist,np)

endif

The primary mechanism provided by GA for accessing data are copy operations
that transfer data between layers of memory hierarchy, namely global memory

Figure 2: Example of a regular distribution of an 100x100 array for 16 processes. The arrayplist contains
results of thega_locate_region corresponding to the shaded section and returned for processP10.

plist

50 51 76

50 75 76

51 51 51

75 75 75

6 10 14

=

ilo

ihi

jlo

jhi

process

100

100

P1P0 P3P2

P5P4 P7P6

P9P8 P11P10

P13P12 P15P14

50

76

51 75

10

(distributed array) and local memory. In addition, each process is able to access directly
data held in a section of a global array that is assigned to that process. Atomic operations
are provided that can be used to implement synchronization and assure correctness of an
accumulate operation (floating-point sum reduction that combines local and remote data)
executed concurrently by multiple processes and targeting overlapping array sections.

4.2 MIRRORED ARRAYS: METACOMPUTING EXTENSIONS TO GA

In recent years there has been increasing interest in metacomputing. Metacomputing
environments comprise multiple supercomputers and other devices (mass storage
systems, display devices) connected via wide area networks (WANs). Important to the
usability of such systems is an integrated software environment that allows these
resources to be treated, to some extent at least, as a single virtual system [28]. One
example of such an environment was the I-WAY system constructed for the
Supercomputing 95 conference [29].

Metacomputing is interesting since it can potentially provide increases in the
computational power accessible to an individual user. From the memory hierarchy
perspective, the metacomputer environment provides one or more additional layers of
memory, with typically much higher latencies and lower bandwidth than in a
supercomputer. Conceptually, this environment is similar to the clustered network of
multiprocessor workstations. The main differences arise from the ratios of floating-point
performance of nodes and network performance. There are three major performance
factors to consider when analyzing the effectiveness of network high-performance
computing:

• Floating point performance of a network compute node: tens to hundreds of GFLOPS
(aggregate for all processors sharing the same network connection) for a
supercomputer connected to a WAN vs. tens to hundreds of MFLOPS for a typical
workstation.

• Network bandwidth: the LAN supports rates from a fraction of a MB/s to tens of MB/
s (e.g., Myrinet network [30]); in contrast common WAN technologies provide tens
of KB/s to a few MB/s. Even more seriously, the bisection bandwidth of a WAN-
connected supercomputer will typically be much lower than that of a LAN-connected
supercomputer: while technologies such as Myrinet provide a crossbar, in a WAN
multiple (hundreds and even thousands) processors typically have to share the
bandwidth of a single link, making the effective network bandwidth per processor
orders of magnitude lower than for tightly coupled clusters of workstations.

• Network latency: in the LAN environment, latency can range from a few tens of
microseconds for highly integrated systems (e.g., Fast Messages on the Myrinet
network [30] or Active Messages on the ATM network [31]) to a few milliseconds for
TCP/IP over Ethernet. In contrast latencies of tens to hundreds of milliseconds were
not unusual for the I-WAY WAN. While WAN bandwidth can be expected to
improve significantly with advanced network technologies, the latency has physical
limits that are currently being approached. For example, 12 milliseconds is required

11

for light to cover the distance between the East and West coast of North America. For
a 200 MFLOPS processor, this time is equivalent to 2,400,000 floating point
instructions.

In summary, the relative cost of access to remote memory (weighted with floating-point
performance) is much higher for an I-WAY metacomputer than for clusters of worksta-
tions. Despite progress in network technology, the high latencies are and will continue to
discourage frequent transfers of small amounts of data over the wide area networks.

In spite of the communication limitations of WAN computing, there are some
classes of applications that can take advantage of the potentially enormous computational
power of multiple supercomputers. A number of techniques can be used to program these
applications. For example, applications can asynchronously prefetch data while
computations take place. However, this approach requires significant restructuring of the
code and is applicable only to some algorithms. It is important to consider higher-level
approaches that do not require such explicit code restructuring.

In the GA NUMA programming model, an alternative approach to programming
metacomputing applications is possible based on what we call mirrored arrays. Mirrored
arrays are replicated in each WAN-connected supercomputer (see Figure 3). Arrays are
fully distributed within each machine, so the amount of data held by each processor
increases by a factor roughly proportional to the number of networked supercomputers.
Each supercomputer operates on its own mirrored array independently, and a
ga_net_merge primitive is provided for enforcing consistency of the different mirrored
arrays. This primitive is a collective operation across all supercomputers and merges
entire or user-specified sections of the mirrored arrays. Upon completion of this
operation, all machines have identical copies of the specified array or array section.
Mirrored arrays can be seen as a cache for WAN-remote memory with thewrite-back
policy. This means that an update is not propagated to the lower-level memory
immediately (unlike in thewrite-throughprotocol) but only when needed.

WAN

WAN

original
matrix

Figure 3: Distribution and mapping of a matrix using standard fully-distributed and mirrored aproach

di
st
rib

ut
ed

m
irrored

12

Mirrored arrays work in the GA framework for applications that are structured to
access data in blocks (to reduce sensitivity to latency) and do not have to read and write
to the same array in the same computational phase (any other part of the algorithm can be
executed in the replicated fashion). For example, processes can read components of one
distributed array and update another array; at the end of this computational phase
processes enforce consistency of the updated arrays withga_net_merge. The result is that
most GA communication occurs locally within supercomputers. Total network traffic is
lower and average message size sent across the network is larger than in the fully
distributed approach. This approach can be effective if a portion of the algorithm that
cannot use mirrored arrays (or other technique that reduces sensitivity to WAN latency)
does not dominate the computations.

This use of mirrored arrays is similar in spirit to replicated shared memory, which
minimizes latency in access to shared data by maintaining fully replicated copies of the
data at each node [32]. Data consistency is assured by broadcasting modified pages to all
the nodes. In contrast to replicated shared memory, mirrored arrays make the
programmer responsible for enforcing consistency.

To evaluate the utility of mirrored arrays, we used a large computational chemistry
application self-consistent field (SCF), implemented on top of GA, and measured its
performance on the I-WAY metacomputer. Our experiments used two Intel Paragons
located at San Diego Supercomputer Center and at the California Institute of Technology
in Pasadena, connected with a wide-area network (70 Kbytes/s bandwidth and 35 ms
latency). Two versions of Global Arrays were used: the standard fully-distributed version

0.0

100.0

200.0

300.0 single machine

fully distributed

8 16 8+8 8+8

number of processors

ex
ec

ut
io

n
tim

e
[s

]

mirrored

13.2s 6.6s

317s

7.6s

Figure 4: Execution times for SCF on a single Paragon and two Paragons connected with WAN

13

and the version with metacomputing extensions. In the standard version, the fact that
some memory was WAN remote was not exposed to the application. In the second
version, the application was presented with two layers of remote memory -- one available
within each machine and the other available through the WAN and supported through
mirrored arrays. Figure 4 shows the results obtained in four different system
configurations: 8 and 16 nodes on a single Paragon, and 8+8 nodes split between two
Paragons, using the two versions of the program. We see that the performance penalty for
ignoring the memory hierarchy is tremendous in the standard fully-distributed version;
this penalty prevented us from executing the application for any but a very small problem
size. In contrast, the mirrored array version of SCF performed well, almost as well as the
single machine version.

4.3 DISK RESIDENT ARRAYS

Disk Resident Arrays (DRA) extend the GA model to another level in the storage
hierarchy, namely, secondary storage. DRA introduces the concept of a disk resident
array--a disk-based representation of an array--and provides functions for transferring
blocks of data between global arrays and disk resident arrays. Hence, it allows
programmers to access data located on disk via a simple interface expressed in terms of
arrays rather than files. This extends the benefits of global arrays (in particular, the
absence of complex index calculations and the use of optimized, blocked
communication) to programs that operate on arrays that are too large to fit into memory.

By providing distinct interfaces for accessing objects located in main memory and
on the disk, GA and DRA render visible the different levels of the memory hierarchy in
which objects are stored. Hence, programs can take advantage of the performance
characteristics associated with access to these levels. Recall that memory hierarchies
consist of multiple levels, but are managed between two adjacent levels at a time [3]. For
example, a page fault causes the transfer of a data block (page) to main memory while a
cache miss transfers a cache line. Similarly, GA and DRA allow data transfer only
between adjacent levels of memory. In particular, data transfer between disk resident
arrays and local memory is not supported. Since we would be jumping between
nonadjacent levels in the NUMA hierarchy, performance is expected to be disappointing,
and portable implementations problematic.

DRA read and write operations can be applied both to entire arrays and to sections
of arrays (disk and/or global arrays); in either case, they are collective and asynchronous.
The focus on collective operations within the DRA library is justified as follows. Disk
resident arrays and global arrays are both large, collectively created objects. Transfers
between two such objects seem to call for collective, cooperative decisions. (In effect, we
are paging global memory.) We note that the same model has proved successful in the
GA library: operations that move data between two global memory locations are
collective while transfer between global and local memory is noncollective. This
collective I/O strategy has been adopted in many other projects for similar reasons [33,
34, 35]. A DRA asynchronous interface to its I/O operation permits applications to
overlap time-consuming I/O with computation.

14

5 Conclusions and Future Work

We have described techniques and tools that support explicit but high-level management
of data movement in memory hierarchies. The GA library is a tool for transferring data
between local memory and global (distributed memory); the DRA library extends the GA
model to allow data transfer from global memory to secondary storage. The application
experience with the GA and DRA libraries demonstrates that these tools can simplify
significantly application development and at the same time, by exposing to the
programmer NUMA memory hierarchy and promoting data locality, can be instrumental
in development of highly scalable algorithms [27, 24].

Our experiences with GA and DRA suggest several directions for future work. The
capabilities of the GA and DRA libraries themselves can be extended, for example to
support data structures other than dense arrays. A long-term direction might be to extend
the current three-level model to support the additional memory hierarchy layers that can
be expected in future highly parallel architectures. For example, in a system comprising
clusters of distributed memory or shared memory nodes, we can imagine extending GA
operations that return distribution information (such asga_locate_region or
ga_distribution) with some numeric value that represents relative “distance” from the
calling process. Alternatively, we could provide additional data movement operations
that transfer data from “global” memory to “cluster” memory, and then to “local”
memory.

6 Acknowledgments

Work at PNNL was performed under the auspices of the High Performance Computing
and Communications Program of the Office of Computational and Technology Research,
U.S. Department of Energy under contract DE-AC066-76RLO1830 with Battelle
Memorial Institute which operates the Pacific Northwest National Laboratory. Work at
ANL was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Computational and Technology Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38, and by the Scalable I/O
Initiative, a multi-agency project funded by ARPA, DOE, NASA, and NSF.

7 References

[1] C. Seitz. High-performance workstations + high-speed interconnect≥ multicomputers. InScalable Paral-
lel Libraries Conf., Missisippi State, 1993.

[2] E.F. Van der Velde. Book review on ‘Studies in Computational Science: Parallel Programming Para-
digms’. IEEE Computational Science and Engineering, 2(4):85–87, 1995.

[3] D. Patterson and J. Hennessy.Computer Architecture: A Quantitative Approach. Morgan Kaufmann,
1990.

[4] T. Sterling, P. Messina, and P. Smith.Enabling Technologies for Petaflops Software. MIT Press, 1995.
[5] I. Foster, R. Olson, and S. Tuecke. Productive parallel programming: The PCN approach.Scientific Pro-

gramming, 1(1):51–66, 1992.
[6] P. Hatcher and M. Quinn.Data-Parallel Programming on MIMD Computers. MIT Press, 1991.
[7] C. Koelbel, D. Loveman, R. Schreiber, G. S. Jr., and M. E. Zosel.The High Performance Fortran Hand-

book. The MIT Press, Cambridge, MA, 1994.

15

[8] Message Passing Interface Forum.MPI: A Message-Passing Interface. University of Tennessee, Knox-
ville, Ten., May 5, 1994.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, T. v. E. S. Lumetta, and K. Yelick. Parallel pro-
gramming in Split-C. InProc. Supercomputing’93, pages 262–273. ACM Press, 1993.

[10] K. Chandy and C. Kesselman. CC++: A declarative concurrent object oriented programming notation. In
Research Directions in Object Oriented Programming. The MIT Press, Cambridge, MA, 1993.

[11] C. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666–677, 1978.
[12] M. Stumm and S. Zhou. Algorithms for implementing distributed shared memory.IEEE Computer,

24(5):54–64, 1990.
[13] High Performance Fortran Forum. High Performance Fortran language specification, version 1.0. Techni-

cal Report CRPC-TR92225, Center for Research on Parallel Computation , Rice University, Houston,
Tex., 1993.

[14] H. Kung. Synchronized and asynchronous parallel algorithms for multiprocessors. In J. Traub, editor,Al-
gorithms and Complexity, pages 153–200. Academic Press, 1976.

[15] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
marks: Shared memory computing on networks of workstations.IEEE Computer, 29(2):18–28, 1996.

[16] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared memory system. InProc. ’93
CompCon Conference, pages 528–537, 1993.

[17] N. Carriero and D. Gelernter.How To Write Parallel Programs. A First Course. The MIT Press, Cam-
bridge, Mass., 1990.

[18] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for parallel programming of distributed sys-
tems.IEEE Trans. Software Eng., 18(3):190–205, 1992.

[19] J. Nieplocha, R. Harrison, and R. Littlefield. Global Arrays: A portable ‘shared-memory” programming
model for distributed memory computers. InProceedings of Supercomputing 1994, pages 340–349. IEEE
Computer Society Press, 1994.

[20] E. D’Azevedo and C. Romine. DOLIB: Distributed object library. Technical Report ORNL/TM-12744,
Oak Ridge National Lab., Oak Ridge, TN, 1994.

[21] R.H., Saavedra, R. Gaines, and M. Carlton. Micro benchmark analysis of the KSR1. InProceedings of Su-
percomputing 93, pages 202–213. IEEE Computer Society, 1993.

[22] Convex Computer Corp.Exemplar SPP1000/1200 Architecture. Convex Computer Corp., Richardson,
Tex., 1995.

[23] MPI Forum. MPI-2. information available from http://www.mcs.anl.gov/mpi.
[24] J. Nieplocha, R. Harrison, and R. Littlefield. Global Arrays: A nonuniform memory access programming

model for high-performance computers.The Journal of Supercomputing, 10:197–220, 1996.
[25] J. Nieplocha and I. Foster. Disk Resident Arrays: An array-oriented I/O library for out-of-core computa-

tions. In Proceedings of Frontiers of Massively Parallel Computation. IEEE Computer Society Press,
1996.

[26] J. Nieplocha and R. Harrison. Shared-memory NUMA programming on I-WAY. InProc. of IEEE HPDC-
5, pages 432–441. IEEE Computer Society Press, 1996.

[27] D. Bernholdt et al. Parallel computational chemistry made easier: The development of NWChem.Intl J.
Quantum Chem. Symp., 29:475–483, 1995.

[28] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. InProc. 3rd Workshop on
Environments and Tools for Parallel Scientific Computing. SIAM, 1996. to appear; see also http://
www.globus.org/.

[29] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY: Wide area visual su-
percomputing.Int. J. Supercomputing Applications, 10(2):123–130, 1996.

[30] S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois Fast Messages
(FM) for Myrinet. InProc. Supercomputing’95, 1995.

[31] T. von Eicken, V. Avula, A. Basu, and V. Buch. Low-latency communication over ATM networks using
active messages.IEEE Micro, 15(1):46–53, 1995.

[32] M. Oguchi, H. Aida, and T. Saito. A proposal for a DSM architecture suitable for a widely distributed en-
vironment and its evaluation. InProc. 4-th IEEE Int. Symp. HPDC. IEEE CS Press, 1995.

[33] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, W. Nitzberg, J.-P. Prost, M. Snir, B. Traversat, and P. Wong.
Overview of the MPI-IO parallel I/O interface. InIPPS ’95 Workshop on Input/Output in Parallel and
Distributed Systems, pages 1–15, April 1995.

[34] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy, T. Singh, and R. Thakur. PAS-
SION: Parallel and scalable software for input-output. Technical Report SCCS-636, NPAC, Syracuse, NY,
1994.

[35] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda. In
Proc. Supercomputing ’95, December 1995.

