SGE/Mesa Reference Guide

Verson 1.0
Kenneth Perrine, Pacific Northwest National Laboratory
June 20, 2001

About SGE/Mesa

SGE/Mesais aback-end driver for the Mesa OpenGL implementation to alow pardld
gpplications to render OpenGL graphics and output them to the IBM Scalegble Graphics Engine
(SGE). Multiple nodes share aregion of the output which is currently autometicaly assigned.
SGE/Mesa dso supports the use of multiple threads to render to multiple frames smultaneoudy.

SGE/Mesa has been tested with Mesaverson 3.4.2, and it isintended that it will compile with
future verdons with little modification.

SGE/Mesa can take advantage of multiple nodes and/or threads by splitting up color buffers
among nodes and threads. Multiple frames of an animation sequence can smultaneoudy be
rendered. In addition, parale performance during the tunneling stage (when datais transferred
to the SGE) can be achieved if a color buffer is distributed across more than one node.

GLUT, awindow manager library for smplifying the use of OpenGL implementationsis

modified to automaticaly initidize SGE tunneling support for windows and to aso properly
handle events for the SGE. Events generated from an SGE window are distributed to al nodesin
the group used to initidize GLUT. The GLUT pop-up menus are supported in the pardld
environment and their events are distributed to dl nodes. This modified GLUT library is caled
SGE/GLUT.

Sncedl required SGE functiondlity and pardld event handling is managed in the libraries,

many codes which utilize OpenGL and GLUT libraries will compile with the SGE/Mesaand
SGE/GLUT libraries and utilize the SGE in the parald environment with no code modifications.
Running code which is designed for a sngle workstation in parallel causes the SGE/Mesalibrary
to automaticaly split the digplay into regions (with each region being maintained by a node) and
causes the renderer to render only the geometry which fals within the region that corresponds
with the node. Rendering regions and associated clipping planes on each node are automaticaly
&t in the glViewport, glFrustum, and glOrtho Mesa function calls.

The SGE/Mesalibrary aso has afunction cal which creates rendering threads. Thisdlows
multiple processors on each node to Ssmultaneoudy work on rendering tasks. Each thread can
render asingle frame in a series or render aregion of one or more frames.

It is planned that a future generation of SGE/Mesawill incorporate composting functiondity
which will dlow multiple threads working on one frame to each be respongble for only a portion
of the geometry transformation and rendering. Separate images would then be composited
together (by keying on the background color or utilizing the depth buffer) before being tunneled
or modified.



SGE/Mesa Reference Guide 1.0, page 2

SGE/Mesa Programming Considerations

The SGE/Mesadriver and SGE/GLUT have been made to provide minima impact to existing
code which utilizes GLUT and OpenGL cdls. Many of the example programs which come with
Mesa 3.1 do not require modification to compile and run in the parald environment with
SGE/Mesa. There are, however, a couple of requirements and considerations.

The glutlnit function must be caled before any other GLUT function cdls are made, except for
the SGE/GLUT glutSGESetMPIGroup function. The glutlnit function sets up variables pecific
to SGE/Mesaand d=0 initidizesthe MPI library. If the glutinit function is not called, most
likely an MPI error results saying that MP! had not been initidlized. Notethat it ispossbleto
initidize MPI in the source code and then call glutSGESetM PIGroup before caling glutinit.
This keegps glutlnit from attempting to initidize MPI a second time.

glutSwapBuffers or SGEMesaSwapBuffer must be caled in order to transfer graphics data to the
SGE. Without any cdl to a swapping function, no datatransfer takes place. The gilHush
function does not cause a buffer swap, and requests for direct rendering are ignored.

Other unresolved issues exist as identified in the “ Bugglmprovements’ section.

A debug mode is available for alowing the borders of regionsto be seen. (Thisis done by
reducing the size of regions tunneled to the SGE by one pixdl). To engblethis, set the
“SGEMESA_R” environment variable. (The vaue of the variable may be anything).

SGE/Mesa Multithreaded Considerations

All filesin the“demos’ directory can runin pardle but they don't support multiple rendering
threads. In configurations where one process is run on each node and each node contains more
than one processor, the remaining processors are not utilized unless threads are created in the
application. Additional rendering threads may be used to render to multiple frames or to render
to separate regions of common frames. A separate rendering thread may aso be used to dlow
rendering to take place while atunneling operation is being performed. The
SGEMesaCreateThread function creates a separate rendering thread which createsits own Mesa
rendering context and allows rendering to take place to a separate buffer (for multi-frame
rendering) or to aregion of a shared buffer.

The use of multiple threads requires a synchronization mechanism to be in place to prevent
variables utilized during rendering from being unexpectedly changed by event handler functions.
A queue mechanism is provided by SGE/Mesato store avoid pointer in the main thread and
retrieve the pointer in the rendering thread when the rendering thread isready. An optiona
destructor may be supplied with the pointer when it is submitted to the queue so that it may be
automaticaly destroyed when it is no longer needed.

Seethe “agears’ and “agloss’ demosin the “sgedemos’ directory for examples of adapting two
of the Mesa demos to run with multiple rendering threads. The “amolref” demo creates a
visudization of the molecule specified on the command-line. (Molecules are stored in the
“ggedemos/moalfiles’ directory). Be sureto try right-clicking to get menu options and left-click-
dragging to move the molecule around.



SGE/Mesa Reference Guide 1.0, page 3

To experiment with different configurations of these demondrations, command-line parameters
can control the digtribution of regions and frames.

The —a# parameter (conssting of dash, a, Space, number) sets how many smultaneous frames
exis on each node. The number 8 is default; however, the delay between user input and display
increases and becomes annoying after 4. Setting thisto 1 demonstrates rendering of graphics
datawhile tunneling takes place, which is some improvement over the default approach (as seen
by the “demos’ gpplications) where dl rendering blocks when tunneling.

The—b # parameter sets how many regions are assigned per node per frame. For example, if —b
is 2, then on each frame, the node is respongible for 2 of the regions. Thisis 1 by default.

The —c # parameter sets how many nodes handle the rendering of each frame through subdivison
of regions. The—c parameter must be adivisor of the tota number of nodes, and is the number
of nodes by default. If —cis4, for example, then each frame isrendered across 4 nodes. The
number of subdivisons for each frameisthis vaue multiplied by the —b parameter.

If you' re running a 4-node job, and you want to have each node render a full frame so that four
frames at atime are displayed flipbook- style, you would run with:
—a 1-b1-—1 (for 1thread per node rendering al of 4 frames)

If you're running a 1-node job and you want to divide the output into 4 regions, then you would
run with:

—al-b4 -1 (for 4 threads on the node, rendering dl of 1 frame)

If you're running a 4-node job and you want to render 8 frames and divide the output into 4
regions per frame, you would run:
—a8-b1-4 (for 8 threads per node, each node rendering a quarter of 8 frames)
—a4-b 2 -2 (for 8 threads per node, each node rendering a haf of 4 frames)
—a2-b4 -1 (for 8 threads per node, each node rendering al of 2 frames)

If you're running a 4-node job and you want to have 4 frames with 4 divisons each:
—a4-b1-c4 (for 4 threads per node, each node rendering a quarter of 4 frames)

An earlier demo application called “agears3d” tests the stereo capabilities of SGE/Mesa, but
stereo must be enabled on the SGE in order for this to display both channels.

Additional note: when the SGE GBE (gigabit Ethernet) libraries are used, it is possible to run
multiple processes on one node. When the SGE TBS libraries are used for SP switch links, only
one SGE process may run on each node because of switch adaptor window limitations. Multiple
rendering threads may be created with the SGE/Mesa thread functions, however.

Building SGE/Mesa

Refer to the “ SGE/Mesa Ingalation Notes’ for information on building SGE/Mesa and its demo
applications. The document aso contains troubleshooting items.



SGE/Mesa Reference Guide 1.0, page 4

Building Applications Which Use SGE/Mesa

When compiling your own gpplications, you can use the SGE/Mesa Makefile in the “ sgedemos’
directory for guidance on creating your own makefile. Specificdly, the Mesa“GL”, Mesa
“GLU”, SGE/Mesa“ SGEmesa’, SGE/Mesa“ SGEglut”, SGE tunnding libraries, and SGE X11
libraries must be included when creating an gpplication which utilizes SGE/Mesa

SGE/Mesa Function Reference

The following sections are a function reference for dl publicly-available SGE/Mesa function
cdls. Thefirg section describes functions which are automaticaly caled by the SGE/GLUT
and are not needed if SGE/GLUT isused. Note that some functions can only be caled by
rendering threads as noted whereas other functions can only be called by the main thread.

Low-Level SGE/Mesa Functions

The following SGE/Mesa functions are low-level and are autométicaly caled by GLUT. You
can use these functions if you are not using GLUT:

SGEMesaCreateTunnel (Display *display, Window *window, MPI_Comm group,
GLboolean cursor_flag)
Parameters:
display — The current X display structure,
window — The window to initidize for tunnding.
group — The MP! group corresponding with al nodes which can perform tunneling
operations to the window.
cursor_flag— GL_TRUE if SGE cursor support will be enabled for the window.
Returns:
SGEMesaTunnd — The tunnd object which can be used to create SGE/Mesa contexts.
Description:
SGEMesaCreateTunnel submits awindow for SGE tunneling. The SGE software creates
atunnd region in the window’ s client area which can no longer be written to by X11
cdls. The current verson of the SGE library does not alow the window to be un-
tunneled.

SGEMesaCreateContext (SGEMesaTunnel tunnel, GLboolean stereo_flag, GLboolean
alpha_flag, GLboolean depth_flag, SGEMesaContext sharelist)
Parameters:

tunnd — A window- specific tunnel object returned from SGEMesaCreateTunnel.

gereo flag— Set thisto GL_TRUE to enable stereo support. Separate buffers are created
for left and right channdls. Buffer update time doubles when stereo is enabled.

apha flag— Not corrently used. In alater verson, setting thisto GL_TRUE will engble
the SGE driver to maintain apha channd information for use in compositing
color buffers before they are sent to the SGE.

depth_flag — Not currently used. In alater version, setting thisto GL_TRUE will enable
the SGE driver to maintain depth buffer information for use in compaositing color
buffers before they are sent to the SGE.



SGE/Mesa Reference Guide 1.0, page 5

shardist — Not currently used. In alater verson, this will enable information for an
existing context to be shared with the new context.

Returns.
SGEM esaContext — The SGE/Mesa context object.

Description:
SGEMesaCreateContext creates a context object for drawing to the window identified by
the given tunnd object. Multiple contexts can exist for one window, alowing multiple
buffers to be maintained which can be enabled and displayed at any time through the use
of SGEMesaMakeCurrent. (The use of multiple contexts on one window has not been

tested).

SGEMesaDestroyTunnel (SGEMesaTunnel tunnel)
Parameters:
tunnd — The tunnd object returned from SGEMesaCreateTunnel.
Description:
SGEMesaDestroy Tunnd is provided for memory clean-up purposes. At thistime, it does
not un-tunnel the tunnel object’ swindow. Do not cdl thisif any contexts of this tunnel
arein use, otherwise undefined behavior will result.

SGEMesaDestroyContext (SGEMesaContext context)

Parameters:
context — A context object returned from SGEMesaCreateContext.

Description:
SGEMesaDestroyContext destroys a context and frees all associated resources.
Currently, this does not automaticaly stop the rendering threads. Do not cdll thisif any
rendering threads utilizing this context are in use, otherwise undefined behavior will
result.

SGEMesaMakeCurrent (SGEMesaContext context, GLboolean scanFlag)

Parameters:
context — The SGEMesaContext for the window and graphics buffers to make active.
scanFHag — This forces awindow size check to be made so that buffers can automatically

be redllocated if the output window Size changes.

Returns:
GLint — Returns O if there isafailure in memory dlocation.

Description:
SGEMesaM akeCurrent activates a context and its rendering threads for use with
SGE/Mesa. It dso redlocates color buffersif it detects aresize in the window and
synchronizes sequence and thread information among al nodes.

If no rendering threads exigt (through the SGEM esaCreateT hread function),
SGEMesaMakeCurrent transparently crestes a Mesa context specific to the calling threed
(the main thread). Thisdlowsthe caling thread to then make OpenGL cdls. This
functiondlity is provided to dlow most OpenGL and GLUT code to run on the SGE and
in the pardld environment without coding modifications. This context is autometically



SGE/Mesa Reference Guide 1.0, page 6

destroyed when SGEM esaCreateThread is caled, since the main thread cannot be used
for rendering and tunneling at the same time. Thisisa synchronous cal.

SGEMesaSwapBuffers (SGEMesaContext context)

Parameters:
context — The SGEMesaContext for the window and graphics buffer for swapping.

Description:
SGEMesaSwapBuffers transfers graphics from the buffer corresponding with the next
sequence to display. In thistransfer, the back buffer is swapped to the forward buffer
which is then tunneled to the SGE. While tunneling takes place, the rendering threads
can write to the new back buffers, unless no threads had been created with
SGEMesaCreateThread. This function is synchronous and should be cdled by the main
thread. Thisisautomaticaly caled by glutSwapBuffers.

Note that this function blocks until dl rendering threads corresponding with the sequence
number of the frame to display have called SGEMesaThreadPogt. If no rendering threads
had been created with SGEMesaCreateT hread, then SGEMesaSwapBuffersisonly in
charge of swapping the default rendering context and returns when the tunneling

operation is completed.

General SGE/Mesa Functions: Main Thread

The fallowing functions are used in conjunction with SGE/GLUT, and may dso be used if
SGE/GLUT isnot used. These should only be called by the main thread and not the rendering
threadsif any were created with “ SGEMesaCreateThread” .

SGEMesaCreateThread (SGEMesaContext context, void (*renderFunction)(void *),
void *renderArg, GLint seqNo)

Parameters:
context — The SGEM esaContext to which the rendering thread will be associated.
renderFunction — The function which will be called by the new rendering thread. This
function isthe controller for the rendering thread.
renderArg — A void pointer which is passed to renderFunction as an argument.
segNo — The sequence number for the rendering thread. This can be used to associate
this rendering thread with other threads for automatic screen divison, or to
identify this rendering thread' s output in a series of output frames.
Returns.
GLint— Thevdue of —1 isreturned if athread is successfully created. If not, O is
returned.
Description:
SGEMesaCreateThread creates rendering threads. During the creation process, a thread-
specific OpenGL context is generated and associated with the new thread. The thread
can then make OpenGL cdls which are independent from calls made by other threads.
The new thread is suspended until SGEMesaMakeCurrent iscalled. SGE/GLUT
automaticaly cdlsthisinits event loop. To terminate the rendering thread, |et the thread
exit renderFunction. Call SGEMesaCreateThread from the main threed.



SGE/Mesa Reference Guide 1.0, page 7

SGEMesaQueueStore (SGEMesaContext context, GLint seq, void *element,
void (*destructor)(void *))
Parameters:

context — The SGEMesaContext of interest

seq — The sequence number belonging to the thread(s) which will retrieve the queue item.
The SGEM esaNextQueueSeq function can be used to generate sequence numbers.

element — A pointer to some data structure which will be retrieved by rendering threads.

destructor — Pointer to afunction which can be called when the eement for a sequence
number is replaced or expired in the queue. Asan example, the free function can
be specified if the data pointed to by element was dlocated with malloc. Specify
NULL to keep adestructor function from being called.

Description:

SGEMesaQueueStoreis atool for passing information from controlling code to rendering

threads. Specifically, dataintended for threads associated with a particular sequence

number can be passed from the main thread to those rendering threads without

concurrency or synchronization issues. The main thread uses SGEM esaQueueStore to

put the data into the back portion of the queue. The data stays in back portion until

SGEMesaSwapBuffersis caled and the buffers corresponding with the given sequence

number are swapped. The dataiis moved from the back portion of the queue to the

forward portion where it is vishle by SGEMesaQueueGet. At this point, the rendering

thread(s) for that sequence number begin work on anew frame and SGEM esaQueueGet

is caled by the rendering thread(s) to retrieve the stored data. The data expiresin the

gueue when the next data item in the back portion of the queue is propagated to the

foreground portion. This function does not pass data to other nodes.

SGEMesaNextQueueSeq (SGEMesaContext context)

Parameters:
context — The SGEMesaContext of interest.

Returns.
GLint — The sequence number for the next available queue postion. Thevdueof —1is

returned if there is no podition open in the queue.

Description:
SGEMesalNextQueueSeq returns the sequence number for the next available queue
position. Note that sequence numbers corresponding with threads on other nodes are dso
returned. That means that regardless of how sequences are distributed across nodes,
concurrent cals to SGEMesaNextQueueSeq on dl nodes return the same vaue on all
nodes. (Thisisassuming that SGEMesaMakeCurrent had been cdled to synchronize all
nodes with the same rendering information. Note that GLUT automaticdly cdls
SGEMesaM akeCurrent).

General SGE/Mesa Functions: Rendering Thread
The following functions are designed to only be called from the rendering threed.

SGEMesaThreadPost (SGEMesaContext context)
Parameters:
context — The SGEMesaContext of interest.



SGE/Mesa Reference Guide 1.0, page 8

Description:
Rendering threads cal SGEMesaT hreadPost when rendering for aframe is complete and

the frameis ready to be tunneled to the SGE. SGEMesaThreadPost blocks until the main
thread calls SGEMesaSwapBuffers and the buffers corresponding with the sequence
number of the rendering threads are tunneled.

SGEMesaQueueGet (SGEMesaContext context)

Parameters:
context — The SGEMesaContext of interest.

Returns:
void* — The data item from the queue, or NULL if there isno dataitem.

Description:
SGEMesaQueueGet dlows arendering thread to retrieve information from the queue
associated with the rendering thread’ s sequence number. If no datais available in the
queue, NULL isreturned. Note that arendering thread’ s control loop should check for a
NULL return vaue. If aNULL isencountered, the rendering thread should then kip its
rendering steps, call SGEPostThread, and then try calling SGEM esaQueueGet again.

SGE/Mesa Reporting Functions

These functions return vaues maintained by the SGEM esaContext. Some of these functions are
thread- specific and can only be run from rendering threads where noted.

SGEMesaGetSeqNo (SGEMesaContext context)
Parameters:
context — The SGEMesaContext of interest.
Returns.

GLint — The sequence number which had been assigned to the calling rendering thread
when it was created with SGEMesaCreateThread. The vaue of —1isreturned if
thereis an error.

Description:

SGEMesaGetSegNo can be used to retrieve the sequence number which corresponds with

the cdling thread. This function only worksif arendering pand had been associated

with the calling thread, ather if the calling thread was created with

SGEMesaCreateThread or if a default rendering context was created by

SGEMesaM akeCurrent.

SGEMesaGetNodeNo (SGEMesaContext context)
Parameters:
context — The SGEMesaContext of interest.
Returns:
GLint — The MPI rank number of the node on which this function is being called.
Description:
SGEMesaGetNodeNo can be used to retrieve the node number which corresponds with
the cdling node. Any thread can call this function.

SGEMesaGetTotalNodes (SGEMesaContext context)



SGE/Mesa Reference Guide 1.0, page 9

Parameters:
context — The SGEMesaContext of interest.
Returns.
GLint — The total number of nodes in the group utilized by SGE/Mesa.
Description:
SGEMesaGetTota Nodes returns the total number of nodes in the group utilized by the
SGE/Mesatunnd. Any thread can cal thisfunction.

SGEMesaGetThreadNo (SGEMesaContext context)

Parameters:
context — The SGEM esaContext of interest.

Returns.
GLint — The number which had been assgned to the cdling thread. Thevaueof —1is

returned if there is no number which had been assgned or if thereis an error.

Description:
SGEMesaGetThreadNo returns the thread number which had been assigned to the calling
thread when SGEMesaCreateThread was caled. Only rendering threads can cal this
function.

SGEMesaGetThreadsLocal (SGEMesaContext context)

Parameters:
context — The SGEMesaContext of interest.

Returns.
GLint — The number of rendering threads registered with the given context which exist on

the cdling node. Thevdueof —1 isreturned if thereis an error.

Description:
SGEMesaGetThreadsl_ocd returns the number of rendering threads belonging to the
given context on the cdling node. The number of rendering threads on other nodes is not
consdered in thisfunction. The returned value is not accurate until
SGEMesaMakeCurrent is called after threads are created with SGEM esaCreateT hread.
The main thread or arendering thread can call this function.

SGEMesaGetThreadsGlobal (SGEMesaContext context)

Parameters:
context — The SGEMesaContext of interest.

Returns.
GLint — Thetotal number of rendering threads registered with the given context across all

nodes. Thevaueof —1 isreturned if thereisan error.

Description:
SGEM esaGetThreadsGloba returns the total number of rendering threads registered with
the given context across dl nodes. The returned vaue is not accurate until
SGEMesaMakeCurrent is called after threads are created with SGEM esaCreateT hread.
The main thread or a rendering thread can cal this function.

SGEMesaGetNumSeqgs (SGEMesaContext context)
Parameters:



SGE/Mesa Reference Guide 1.0, page 10

context — The SGEM esaContext of interest.

Returns.
The number of unique sequence vaues in use among al nodes.

Description:
The value returned by SGEM esaGetNumSegs represents the number of potentially
smultaneoudy-rendering graphics frames (not congdering multiple regions of esch
frame). Thisdsoisthetotal number of back-queue positions maintained by
SGEMesaQueueStore. Avoid caling thisfunction repetitively if possble. Whilethis
function isnot dow, it isnot trivid as it iterates through an array counting unique
sequence va ues.

SGEMesaGetDimensions (SGEMesaContext context, GLint *width, GLint *height,

GLint *x, GLint *y, GLint *totalWidth, GLint *totalHeight)

Parameters:
context — The SGEMesaContext of interest.
width — areturn for the width of the current thread’ s region width
height — areturn for the height of the current thread' s region height
X — areturn for the x-postion of the current thread' s region tarting point
y — areturn for the y-position (from the bottom of the window) of the current thread's

region sarting point

tota Width — areturn for the width of the total buffer (window size)
totalHeight — areturn for the height of the total buffer (window Sze)

Returns.
GLint— 0 if there was an error or if there is no context associated with the current thread.

Description:
SGEMesaGetDimeng ons returns information on the Sze and position of the regionin
which the cdling threed rendersto. The coordinates (0, 0) for x and y correspond with
the lower Ieft-hand corner of the screen. The vaues returned by this function (for the
region width, height, and coordinates) should be the same as what glGet operations for
querying the viewport would return. Any thread can cdl this function which renders.

SGE/Mesa GLUT Functions

These are functions which have been added to the GLUT library to support the SGE and the
pardle environment.

glutSGEGetContext ()
Returns:
SGEM esaContext — The current context utilized by GLUT.
Description:
glutSGEGetContext is provided to alow the current context maintained by GLUT to be
exposed o that calls to functions such as SGEMesaCreateT hread can be made.

No tests have been done to verify that this function works correctly when GLUT is
managing more than one window.

glutSGESetMPIGroup (MPI_Comm group)



SGE/Mesa Reference Guide 1.0, page 11

Parameters:

group — The group which will be used for SGE/Mesaintercommunication and SGE
tunnding operations.

Description:
glutSGESetMPIGroup alows a group to be defined for usein SGE/Mesaand SGE
transfers. This function must be called before glutinit iscaled. If this function is not
utilized, then glutinit autometicaly cdls MPI_Init and then usesthe
MPI_COMM_WORLD group.

glutSGESetStereo (int flag)

Parameters:

flag— Set flag to nonzero to enable SGE stereo contexts. GLUT hasitsinterna varigble
st to zero by default to disable stereo.

Description:
glutSGESetStereo enables stereo support in GLUT. Specificdly, it tells GLUT to set the
stereo flag when calling SGEMesaCreateContext. To enable stereo, call
glutSGESetStereo before cdling glutCreatéWindow.

glutSGESetAlpha (int flag)

Parameters:

flag — Set flag to nonzero to enable dpha channd support for compositing. Thisis zero
by defauit.

Description:
glutSGESetAlphatdls GLUT to set the dpha flag when it calls SGEM esaCreateContext.
Thisflag is currently not used by SGEM esaCreateContext, but could be enabled if
needed.

glutSGESetDepth (int flag)
Parameters:
flag — Set flag to nonzero to enable depth buffer support for compositing. Thisis zero by
default.
Description:
olutSGESetDepth tells GLUT to et the depth buffer flag when it calls
SGEMesaCreateContext. Thisflag is currently not used by SGEM esaCreateContext.

Bugs/Improvements

Currently, no dphachannd is requested when “gl_create visud” iscdledin
“SGEMesaCreateContext”. The driver does not currently have code to maintain an apha
channd.

The SGE/Mesa driver maintains 16-bit color datain the SGE 16-hit color format. No support for
8-bit color channelsiswritten in this verson for the SGE 32-bit color format. Note that color
data read back from the buffer (either with glReadPixedls or for blending) is promoted from its 5-
bit width per channel to 8 bits.



SGE/Mesa Reference Guide 1.0, page 12

GLUT text doesn't plot if the origin of the text is outsde of the viewport. This meansthat if
output is automaticaly divided among multiple nodes, some text will be cut off. A way to fix
thisisto change GLUT so that it will start text outside of the viewport, or to plot text onto an
offscreen texture buffer and then render the texture.

As mentioned above, SGE/GLUT will not initidize MPI unless the “glutinit” cal is made.
Some demos do not cal “glutinit” (but “glutlnit” may be added to such code and recompiled to
fix this problem).

Some demos (such asthose in the “Mesa-3.4.2/book” directory) do not cal any swapping
functions. SGE/Mesawill not initiate atunneling operation unless an explicit swap is made as
mentioned above.

Some demos, such as the “demaosiray” or “demos/tunnd” (no correlation with SGE Tunneling)
do not work because of a hack done to divide projection coordinates among nodes. Specifically,
projection matrices other than the identity matrix may not be modified by glFrustum, glOrtho, or
gluPerspective without problems occurring. In addition, the action of pushing or popping a
projection matrix will cause the projection matrix to change unexpectedly (which is what
happensin “demosray” and “demos/tunne”.) A current workaround for thisis to aways load
an identity matrix and then cal glFrustum, glOrtho, or gluPerspective. (A generdized

“Frusum” and “Ortho” driver cal in the Mesa“ matrix.c” file would solve this problem easly).

No support exists for clean rendering thread destruction.

No support currently exists for canceling items submitted to the queue or for canceling
completed renderings submitted for tunneling.

Miscellaneous Notes

Currently, SGE/Mesa does not perform compositing. If some smple compositing functionality

is needed, it would be possible to perform composting in the “ SGEMesaSwepBuffers’ function
insrc/sgemesac. Thecdl to “sge update’ is made when abuffer isready to be tunneled. A
nicer compaositor could utilize the rendering threed, freeing up the main threed; in this casg, if
multiple rendering threads are used, the compositor could exist in the “ SGEMesaT hreadPost”
function beforethe “READY” vadueis assgned to the thread table. Improved SGE performance
is observed when graphics data arrives from multiple nodes; it is therefore advised that the
compositor does not send all of the composited graphics data to one node, but instead composites
in adigtributed fashion according to the established regions (or some new distribution which
would require modifications to the “sge_update” function).

The “ SGEMesaSwapBuffers’ function currently is required to be called from the main thread
the same thread which isin charge of receiving eventsin SGE/GLUT. “ SGEMesaSwapBuffers’
blocks while the SGE tunneling operation takes place, even if separate rendering threads perform
rendering. 1t may be possible to have another thread run which performsthe call to the tunnel
operaion aslong as amechanismisin place to prevent the SGE/GLUT cdlsto the SGE event
handler from occurring while a tunneling operation is taking place.



SGE/Mesa Reference Guide 1.0, page 13

Currently SGE/Mesa automatically assigns output regions as equa screen areas proportionate to
the number of nodes. To change this behavior, code in the “dlocBuffers’ function in sgemesa.c
can be modified. The portion of code which assgns region vauesisidentified by aremark
preceding the assgnments to the “region” structure.

Codein “sgemesac’ alows auto-partitioning of up to 20 nodes. To add support for more nodes,
add one or more entries to the “switch” block at the sart of the “dlocBuffers’ function. Itis
concelvable that one would want to try to run 64 instances of SGE/Mesa on four 16-processor
nodes with the SGE GBE libraries. (Let me know how it goes!) Also note that if it isintended

to try over 256 threads (or processes), increase the value in the “MAXTHREADS SGE”
definition at the gart of “sgemesac”. This value controls the size of the table of regions shared
across al nodes.



