
One-sided Communication on the Myrinet-based SMP Clusters
using the GM Message-Passing Library

Jarek Nieplocha ✓Jialin Ju Edoardo Apra

Pacific Northwest National Laboratory Tivoli Systems Inc. Pacific Northwest National Laboratory

1. Introduction

In the past five years, the Myrinet network has received much attention in the literature on high-performance
communication. Multiple projects have focused on developing efficient messaging middleware (e.g., AM[1], PM[2],
BIP[3], and HPVM FM [4]) by exploiting the programmable network interface card (NIC) of Myrinet. The most
common use of these interfaces has been support of MPI and other internal research projects. The HPVM project
used its FM system to implement MPI and other programming interfaces including two one-sided: the Cray
SHMEM and Global Arrays. In the last few years, because of the good scalability and rather moderate cost, Myrinet
has become the primary network for building medium and large-scale clusters based on commodity processing
nodes (e.g., Intel or Alpha Linux systems). To our best knowledge, with the exception of the NCSA Windows NT
SuperCluster that operates in the HPVM environment, the majority of medium and large Myrinet-based clusters
used in production mode rely on the GM message-passing library and the MPICH, with the MPICH GM channel
provided by Myricom. GM is the Myrinet alternative to the low-level messaging middleware systems mentioned
above [5]. With exception of an AM implementation on top of GM, these other interfaces are not compatible at run-
time and cannot be installed with GM. GM has been designed to provide high bandwidth and very low latency
message passing in the polling mode. In addition to message passing, GM also supports a one-sided put operation
(gm_directed_send) to remote registered (pinned) memory area.

In this work, we are interested in developing efficient one-sided communication on commodity clusters that use the
Myrinet network and the standard Myricom software environment, which includes GM and MPICH/GM. One-sided
communication supports the global-address-space programming model that for some applications is more
appropriate than the MPI-1 two-sided message-passing communication. This model combines some advantages of
shared memory, such as direct access to shared/global data, and the message-passing model, namely the control over
locality and data distribution. One of the primary goals for the current work is to develop, distribute, and support a
communication library compatible with the standard environment of the Myrinet clusters employed for production
purposes. This consideration introduces some restrictions and offers certain advantages for the potential users. For
example, interoperability with MPICH/GM is assumed and required. For practical reasons and the ease-of-use by
ordinary non-expert users, our implementation attempts to minimize consumption of the GM ports in order avoid
rebuilding and reinstalling Myrinet software to increase the number of available ports. We also consider the SMP
environment and interaction of shared memory with the communication subsystem. This work is performed in
context of a portable one-sided communication interface, ARMCI [6], developed as a portable run-time system for
distributed array libraries and compilers. The primary operations in ARMCI include put, get, accumulate, and
mutual exclusion operations. The library is available on a variety of platforms including massively parallel
processors (MPP) and clusters.

The paper makes several contributions to the field. First it shows how to build an efficient implementation of one-
sided communication on top of GM, a two-sided low-level message-passing library on Myrinet. It also addresses
critical design issues faced on the commodity SMP clusters and then describes possible solutions. The performance
implications of the design decisions are presented and discussed in context of a standalone communication
benchmark as well as two applications. Finally, it offers some indications on what additional features would be
desirable in a communication library like GM to better support one-sided communication.

The paper is organized as follows. Section 2 describes ARMCI interface and model. Section 3 discusses the
technical aspects of implementing one-sided communication based on GM. Experimental results are provided and
discussed in Section 4, and we present conclusions in Section 5.

✓ The author did this work while at PNNL.

2

2. ARMCI

ARMCI was developed to support remote memory operations in the context of distributed array libraries and
compiler run-time systems [6]. It was also used to implement other communication libraries such as a portable
version of the Cray SHMEM library [7]. The ARMCI interface is portable and compatible with MPI (and on some
platforms, it also was used with PVM and TCGMSG message-passing libraries). Moreover, ARMCI requires a
message-passing library for the process startup and user environment initialization. ARMCI is available on clusters
of common Unix and Windows workstations/servers and MPP systems.

Compared to the well known Cray SHMEM one-sided interface [8], ARMCI focuses on non-contiguous data
transfers that correspond to data structures used in scientific applications (e.g., sections of multi-dimensional dense
or sparse arrays). Such transfers are optimized thanks to the non-contiguous data interfaces available in the ARMCI
data transfer operations: multi-strided and generalized UNIX I/O vector interfaces. By default, ARMCI supports up
to eight stride levels corresponding to eight-dimensional arrays. The library provides three classes of operations:

• data transfer operations including put, get, and accumulate

• synchronization operations—local and global fence and atomic read-modify-write, mutex operations

• utility operations for allocation and deallocation of memory and error handling.

ARMCI only supports communication that targets remote memory allocated via the provided memory allocator
routine, ARMCI_Malloc, which is similar to MPI_Win_malloc in MPI-2. On shared memory systems including
SMPs, this requirement allows the library to allocate shared memory for the user data and consecutively map one-
sided operations to direct shared memory accesses, thus achieving sub-microsecond latency and a full memory
bandwidth [10].

3. Technical Approach

ARMCI progress rules, unlike one-sided “active” communication model in the MPI-2 or put/get operations in
Generic Active Messages, declare its one-sided operation to be fully unilateral (i.e., they complete regardless of the
actions taken by the remote process). In particular, polling (implicit when making a library call, or explicit by
provided polling interface) in the application by remote process is not required for communication progress.
Although polling is well suited for achieving very low-latency communication by avoiding the cost of interrupt
processing, it only works well when remote processing is expecting communication and enters the polling loop
before the message arrives [11]. That scenario is often exploited by MPI implementations when running latency
benchmarks. However, it is not necessarily representative of communication patterns or beneficial to real
applications, even of two-sided protocols. For example, the polling implementation of MPICH on Myrinet offers

Operation Description

ARMCI_Put, ARMCI_PutV, ARMCI_PutS contiguous, vector and strided versions of put

ARMCI_Get, ARMCI_GetV, ARMCI_GetS contiguous, vector and strided versions of get

ARMCI_Acc, ARMCI_AccV, ARMCI_AccS contiguous, vector and strided versions of atomic accumulate

ARMCI_Fence blocks until outstanding operations targeting specified process complete

ARMCI_AllFence blocks until all outstanding operations issued by calling process complete

ARMCI_Rmw atomic read-modify-write

ARMCI_Malloc memory allocator, returns array of addresses for memory allocated by all
processes

ARMCI_Free frees memory allocated by ARMCI_Malloc

ARMCI_Lock, ARMCI_Unlock mutex operations

3

several times better latency than the interrupt-based MPIPro on the Giganet cLAN, but it did not make the NAS
benchmarks run any faster on the Dell Linux cluster [12]. Similarly, on the IBM SP that offers polling and interrupt
modes of operations in MPI, often the polling mode is used for running communication benchmarks while the
interrupt mode, which produces a much higher latency [13], is more often used for running real applications. The
polling mode leads to a lower responsiveness and higher CPU consumption than the interrupt mode, but neither of
these factors has any affect on latency results in the standard message-passing ping-pong benchmark that is often
misused as a sole metric of the performance quality of a message-passing implementation. As the explicit polling
does not seem compatible with one-sided communication, and for the reasons mentioned above, ARMCI does not
offer a polling operation and avoids using active polling in its implementations.

The default implementation of ARMCI for clusters of workstations with generic TCP/IP networking support
exploits the socket interface. An extra "data server" process (Unix) or thread (primarily on Windows) is forked on
each cluster node to service one-sided communication requests from its clients (user MPI tasks). To prevent server
thread/process in the absence of one-sided communication requests from consuming resources needed by the user
processes, special care is needed to reduce CPU utilization by using blocking wait rather than active polling of the
network interfaces. In the case of the TCP/IP protocol, "data server" exploits select with a descriptor set that
includes sockets dedicated to communication with every task on remote nodes. This system call blocks until data or
a request is received on at least one of the sockets. The performance is consistent with the h/w and IP protocol
limitations. For example, latency of the get operation on Linux/Intel varies from 160µs (kernel 2.2.10smp) to 260
(kernel 2.2.14smp) µs on 100BaseT Ethernet, and is almost the same as the MPICH round-trip, message-passing
latency for the same system configuration. The bandwidth on the 100BaseT Ethernet is 11.7 MB/s for both
contiguous and strided operations. However, this level of performance does not meet requirements of many
applications, and often makes impossible for them to scale beyond a few nodes.

The TCP/IP implementation of ARMCI can be used on Myrinet as well, as this network, in addition to the GM
interface, can support the standard IP protocols. The Myricom implementation of IP if enabled consumes one of the
eight GM ports. There have been several implementations of the TCP/IP protocol on Myrinet in the last several
years, most notably by the Trapeze project[14] for FreeBSD. Although, proof-of-concept implementations
demonstrated that performance levels as good as 1 Gbit/s can be obtained, the production implementation distributed
by Myricom for Linux is far from aproaching that level of performance. Apart from the nominal performance issues,
the TCP/IP protocol limitations [15] make it not the optimal choice for high-performance computing on clusters.

GM

GM is a low-level message-passing system for the Myrinet network [5]. The GM system includes a driver, the
Myrinet-interface control program, a network mapping program, and the GM API, library, and header files. GM
features include 1) concurrent, protected, user-level access to the Myrinet interface; 2) reliable, ordered delivery of
messages; 3) automatic mapping and route computation; 4) automatic recovery from transient network problems; 5)
scalability to thousands of nodes; and 6) low host-CPU utilization. GM is a light-weight communication layer, and
as such it has certain limitations including inability to send messages from or receive messages into non-DMA-able
memory, lack of support for gather or scatter operations, and inability to register shared memory under Linux. These
limitations affect its performance for some applications. For instance, it is expensive to register/pin memory under
Linux 2.2.X, Solaris does even allow register local memory that was allocated as non-DMA-able in the first place.
Some of these limitations can be addressed by layering a heavier-weight interface over GM, and they also have a
severe impact on our system design.

Architecture of ARMCI over GM

We made the following design assumptions: 1) compatibility with standard unmodified version of MPICH/GM
is required, 2) ARMCI interfaces must be compatible with the System V shared memory as it is required for
effective SMP utilization [10], and 3) consumption of the GM ports by ARMCI should be minimized to avoid
recompiling and reinstalling Myrinet s/w by ordinary users of the cluster.

The baseline GM port of ARMCI was derived from its TCP/IP implementation. As fork is not supported in the
GM programs, an extra pthread is created on every SMP node to play a role of “data server.” This thread opens two
GM ports: one for receiving requests and one for sending a response. The flow control issues in GM make one port
insufficient for that purpose as the server would not be able to respond to the current client request unless all other
pending requests from other clients are received and stored in memory for further processing. In congested cases,

4

depletion of memory on a node would be then possible. However, the number of GM ports used by ARMCI is
independent of the number of MPI tasks on that node. We use the same GM ports allocated by MPICH to send
ARMCI requests to a port opened by the remote “data server” thread. The port sharing technique works well since
we do not use the GM receive operations to avoid handling GM messages sent to that port by the other protocol --
MPI. Instead, a response from the server is delivered by directed send (put) that does not require GM receive
operations (i.e., the data is directly placed in the client memory). In addition, the server sets a flag indicating to the
client that the data transfer is complete. In order to avoid deadlock, the GM tokens associated with send operations
on the client side must be recovered by GM. That library assumes that tokens are relinquished when application calls
gm_unknown operation while polling for arriving messages using the GM receive operations. However the
ARMCI client cannot use this approach for the reasons stated above. Instead, it relinquishes its send tokens
indirectly by calling MPI_Iprobe while waiting for a response from the server. MPI_Iprobe checks the network
interface for MPI messages received on the same port and, by doing so, unknowingly relinquishes tokens associated
not only with MPI but also ARMCI messages. Although this technique might first seem unsafe and dependent on an
implementation of MPI, we believe that for progress and/or performance reasons any implementation of
MPI_Iprobe would have to poll the network interface, thus effectively processing the GM tokens. We also found this
trick to work reliably in practice.

The client communicates with the server by sending request messages in format as shown in Figure 1. The request
messages contain one required component, a header describing the request, and depending on the request type, it
might also include a descriptor for the client buffer, a descriptor for remote memory that the request references, and
data (e.g., in put operation). The optional descriptor for the client buffer has been introduced in the GM port to
provide the server with the ability to respond directly to the client, thus avoiding any intermediate buffering.

As already mentioned, GM only supports data transfers from/to DMA-able memory. Such memory can be obtained
with a GM memory allocation routine. Alternatively, on some systems (including Linux), GM allows registration of
already-allocated memory. To maximize transfer rate, zero-copy protocols in application level libraries require
registration of the user memory. Since ARMCI applications can potentially use the entire physical memory in the
system in context of one-sided communication, we cannot pin user data statically in ARMCI_Malloc. Pinning can
only be done dynamically as a part of data transfer operations, and when these operations are complete, the memory
must be unpinned. Unfortunately, pinning on Linux is an expensive operation. On our Dell Linux system, the
measured rate is only twice the memory copy rate (320- 350MB/s by mlock or gm_register), thus its cost has
to be considered in the protocol design. In addition, on Linux gm_register fails for the System V shared
memory -- according to Myricom due to a problem in the GM implementation. This constraint requires server to
use an extra copy when sending shared memory data via a DMA-able buffer. On the client side, the user buffer is
located most often in local memory; therefore, it can be pinned. Our baseline implementation for GM does not
require memory registration and uses two DMA-able buffers allocated with GM by the server and client at the
startup. The data must be transferred to and from these buffers, thus the corresponding two extra memory copies
reduce the asymptotic transfer rate achievable in that version. This implementation scheme is used on systems such
as Solaris where the registration is not possible. On systems where it is, ARMCI uses that scheme for short messages
or messages involving multiple short contiguous data segments -- GM unlike VIA does not support scatter/gather
operations.

data (optional)local data descriptor (optional)

Request type (put, get, lock,..)
Format (strided, vector)
Client Buffer (pinned/not)
…

Stride arrays
Arrays of Pointers
Segment lengths
…

Figure 1: ARMCI request format for communication with server thread

header remote data descriptor (optional)

5

We improved performance of the baseline implementation for medium and large messages by 1) pinning client
buffer when possible and 2) using pipelined nonblocking sends that overlap with the memory copy on the server
side. The difference between the baseline and pipelined implementation is demonstrated for the multistrided get
operation in Figure 2. This implementation tries to pipeline and overlap memory copy operations with nonblocking
communication using the GM directed send. For large data segments occuring in contiguous or strided requests, our
implementation can increase the overlap level by splitting contiguous data segments into chunks to send them in the
pipelined fashion.

In the next step, we attempted to address the registration cost of the client buffer. In the previous version, this
operation was performed before the request was sent. At least a partial cost of this step can be removed from the
critical path by overlapping it with the memory copy done by the server. We use an extra flag on the server side for
the client to notify the server about the registration state of the user buffer. The notification is performed by a direct
send (put). Client sends a request to the server and then calls gm_register for the user buffer. Before that
operation is complete, the server can receive the request and start copying the first portion of the requested data from
shared memory into its pinned buffer. However, before the first portion is sent back to client, the server must check
the status of the flag. Only when its value indicates that the client buffer registration is succesful can the server issue
a GM directed send operation targeting that buffer. If the client notifies the server that registration was not succesful,
processing of the current request is abandoned by the server. In that case, the client will send it one more time using
a different approach that does require registration.

4. Experimental Results

The experiments were performed on a Linux (2.2.14smp kernel) cluster with Dell PowerEdge-1300 nodes, dual 500-
MHz PIII, 512-MB main memory, and 512-kB, level-2 half-speed cache. The Myrinet network was based on the
Universal, 64/32-bit, 66/33-MHz, Myrinet-SAN/PCI interface, M2M-PCI64A-2 cards, connected to the host by the
32-bit PCI interface. We used the GM message-passing library, version 1.2. In addition, to compare effectiveness of
the GM port we also used TCP/IP protocol over Myrinet and 100BaseT Ethernet. We could not run our experiments
with the Trapeze TCP/IP drivers for Myrinet as they are not available for Linux.

3LQQHG�EXIIHUQRQEORFNLQJ�GLUHFW�VHQGV

1 2

baseline implementation

pipelined implementation

&OLHQW

&OLHQW

3LQQHG�EXIIHU GLUHFW�VHQG 3LQQHG�EXIIHU

6HUYHU

6HUYHU

Figure 2: Baseline and pipelined implementation of multi-strided Get

6

Communication Performance

Figures 3 and 4 illustrate performance of the ARMCI get operation. We discuss get rather than put, because its
performance is easier to measure reliably. In the tests, we attempted to avoid caching effects by using consecutive
accesses that target a different memory areas on remote side. In Figure 3 we compare performance of the three
schemes: baseline, pipelined, and pipelined with overlapped client memory registration for large messages. The two
optimizations increase the bandwidth to 73.5 MB/s, which is 30 MB/s over the baseline implementation. In order to
better understand the efficiency of our approach we measured the rates of memory registration, memory copy, and
GM bandwidth on our cluster. They were bregistration=350MB/s for the memory registration, bcopy =149MB/s for
memory copy (for our optimized version of memcpy), and bGM=101.8MB/s for GM. The GM one-way b/w was
reported by the Myricom program gm_allsize for transfers using DMA-able buffers (the round trip b/w was
reported by that program as 45.81 MB/s). The performance model for the baseline implementation of the ARMCI
get that does not use memory registration is:

=

+

=

 1/b 2/b

1
b

GMcopy

get 43.01MB/s

as the key time components on the critical path of the get operation are: two memory copies and the data transfer
through the network. The transfer time for the request alone is negligible in context of large requests. The computed
value is consistent with our experimental results for the baseline implementation. If registration of memory on both
sides worked (i.e., on a uniprocessor system where ARMCI does not use shared memory) and we were able to
register memory rather than copy the data the model would be:

=

+

=

 1/b 2/b

1
b

GMonregistrati

get 51.68MB/s

For the full overlapping of memory registration on the client side and memory copy on the server side the model is:

=

+

=

 b1/)b , (bmax1/

1
b

GMcopyonregistrati

get 60.48MB/s

We obtain even a higher rate in the optimized implementation as ARMCI uses pipelined send that splits larger
segments into chunks to partially overlap the copy operation with sending data through the network.

Figure 4 shows the ARMCI get performance of the optimized GM implementation over the TCP/IP implementation
on Myrinet and Ethernet.

Figure 3: Performance of three implementations of the ARMCI get operation

0

10

20

30

40

50

60

70

80

0 500000 1000000 1500000 2000000 2500000

bytes

b
an

d
w

id
th

 [
M

B
/s

]

pipeline+overlap

pipeline

baseline

7

The latency of get operation was 75µs for ARMCI/GM. As get involves round-trip traffic across the network, this
number could be compared with the 30µs, round-trip latency for MPICH/GM. An important difference is that
MPICH receives data in the polling mode with both sides actively participating in the data transfer, whereas ARMCI
remote process is unaware of communication targeting its address space and polling is not used. In case of ARMCI,
the latency number includes the cost of activating thread blocked in gm_blocking_receive_no_spin. On
another Linux system with the 666MHz EV67 Alpha CPU and the same Myrinet card the latency is 45µs. For
another comparison, the ARMCI get latency on the Cray T3E is 5 µs, and on the IBM SP, it is 77 µs. Although the
SHMEM interface used by ARMCI on the Cray T3E provides excellent latency, both the IBM SP LAPI and GM
interfaces offer a better support for optimizing noncontiguous data transfers, which in part can improve the overall
communication rate for applications that use such transfers. An example illustrating this point is given in Figure 5.

The performance of ARMCI/GM also can be compared to the results of the HPVM/FM implementation of SHMEM
[16]. On a dual CPU node with the same generation of Myrinet and under Windows NT, the 26-µs latency and 67-
MB/s bandwidth were achieved in shmem_get. That implementation exploited 1) the FM support for one-sided
communication on the NIC (MCP program) and 2) a dedicated CPU with an extra thread that uses active polling
rather than blocking like in our approach. The paper recommended dedication of the second processor to the polling
thread but did not report any application experiences with SHMEM to evaluate tradeoffs and merits of their design.

Figure 4: Performance of the ARMCI get operation using Myrinet and Ethernet

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000 1000000 1000000
0

bytes

b
an

d
w

id
th

 [
M

B
/s

]

GM

IP/Myrinet

IP/Ethernet

0

10

20

30

40

50

60

1 10 100 1000 10000

column size in bytes

multi-strided Get

contiguous Get

Figure 5: Transfer of a square section of a matrix using a single multi-strided or series of
contiguous (one column at a time) ARMCI get operations on GM.

8

Application Study

The SPLASH-2 benchmark suite [17] is a set of parallel applications for use in the design and evaluation of
shared-memory multiprocessing systems. We choose the LU program, which is one of the kernel programs from
SPLASH-2, to evaluate the performance of our approach. The LU program factors a dense matrix into the product of
a lower and an upper triangular matrix. The factorization uses blocking to exploit temporal locality w.r.t. individual
sub-matrix elements. Originally designed to run on shared memory systems, this benchmark can only be used on a
single SMP node. Some modifications were needed for use in one-sided communication such as replacing memcopy
with put/get operations. The computation requires transferring data blocks from the same row and column (for
diagonal blocks). The original benchmark uses block cyclic distribution as a way of achieving load balancing. We
also used block decomposition, as it had better locality of the data accesses thus reducing the amount of
communication across the network. The blocks are distributed according to a block pattern, such that the block that
needs to be transferred has a better chance to reside in a local memory or neighboring memory on the same node.

We used a matrix size of 3072 and a block size of 32 to study performance of the LU benchmark. For both block
cyclic and block distributions, we tested three implementations: 1) GM over Myrinet, TCP/IP over Myrinet, and
TCP/IP over 100baseT Ethernet. As all of them exploited shared memory in the same way, their single SMP results
are identical. Since the block cyclic decomposition yields better load balancing the code scales better on a single
SMP node. However, communication patterns are spread out across all the nodes. Consequently, the benchmark
performance on multiple nodes is better with block decomposition. Performance of the benchmark with GM is
always better than with the IP over Myrinet or Ethernet. For block-cyclic decomposition, a higher amount of
communication through the networks leads to poor performance for TCP/IP over Myrinet as well as Ethernet.

We also tested performance of a real scientific application, NWChem [18] when solving a DFT (functional
theory) SiOSi3 benchmark. We run this test with the same h/w and s/w configuration as the LU benchmark. In
addition, for the ARMCI/GM we also run it on another Linux system equipped with the dual 800 density MHz PIII
nodes and Myrinet). In this case too, the GM version scaled pretty well from 1 to 16 processors. Surprisingly, for
NWChem when using TCP/IP over Myrinet, the performance was much worse than when using Ethernet. It seems
that the driver implementation could be responsible for the unexpected performance drop-offs. Finally, as shown in
Figure 5, we compared scaling of this code on the two Myrinet clusters: the IBM SP with Nighthawk-I 8-way SMP
nodes and the Cray T3E. On the IBM SP, only four tasks per node were used as the TB3MX switch allows only for
that number of tasks to communicate in the user-space mode. The overall scaling of this application on the
Linux/Myrinet is very close to that on the Cray T3E and the IBM SP. The IBM version scales better when the code
executes within the single SMP; however, once multiple nodes are used the scaling becomes slightly worse than on
the Myrinet cluster.

Our experience indicates that, in practice, dedicating the second processor on the SMP node to communications as
recommended by [16] is not necessary for our polling-free implementation since the scaling was very good when
both CPUs were employed for running the application code.

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8

number of CPUs

ti
m

e
[s

]

GM IP/Myrinet IP/Ethernet

Figure 6: Performance of the SPLASH-2 LU benchmark with block-cyclic (left) and block (right) distributions
using ARMCI implementations on top of GM and TCP/IP - Myrinet and 100BaseT Ethernet

0

200

400

600

800

1000

1200

1400

1600

1 2 4 6 8

number of CPUs

ti
m

e
[s

]

GM IP/Myrinet IP/Ethernet

9

5. Conclusions and Future Work

We have described an efficient implementation of one-sided communication on top of GM and Pthreads for the
Myrinet-based SMP clusters. This approach avoids polling, is compatible with shared memory, and exploits
pipelining, nonblocking communication, and overlapping memory registration with memory copy to maximize the
transfer rate. Our implementation uses the standard distribution of GM and is compatible with MPICH/GM.
Performance of our two applications was very good, and the GM implementation allowed them to avoid
performance anomalies of the standard TCP/IP version when running on Myrinet. We plan to continue this work by
further tuning the optimized protocols and investigating how GM and thread scheduling affect latency of one-sided
communication. It would also be interesting to evaluate feasibility and potential advantages of using other
messaging systems such as FM, BIP, or PM for implementing ARMCI on Myrinet. Our experience brings up some
suggestions for improving GM support for one-sided communication such as: ability to register shared memory,
reducing cost associated with activating a thread blocked in GM upon a message arrival, or adding scatter capability
to GM data transfer operations. However, in context of the current work we do not see a missing get operation in
GM as a critical shortcoming -- the requirement for memory registration and its implications would limit the use of
that capability directly anyway.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy (DOE) at Pacific Northwest National
Laboratory (PNNL), which is operated by for DOE by Battelle. This work was supported under the DOE 2000
ACTS project sponsored by the Mathematical, Information, and Computational Science Division of DOE’s Office
of Computational and Technology Research. The Molecular Science Computing Facility in the Environmental
Molecular Sciences Laboratory at PNNL and National Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory provided the high-performance computational resources needed for the work.

Figure 7: The DFT benchmark results on the Cray T3E, IBM SP (8-way SMP), and Linux cluster
configurations with dual Pentium III: GM (500Mhz and 800Mhz), IP over Myrinet, IP over Ethernet.

10

References

1. S. Lumetta, A. Mainwaring, and D. Culler. Multi-protocol active messages on a cluster of SMP’s. In
Proceedings of Super Computing ’97, 1997.

2. H. Tezuka, A. Hori, Y. Ishikawa, M. Sato, "PM: An operating system coordinated high performance
communication library", in High Performance Computing and Networking, Springer LNCS 1225, 1997

3. Loïc Prylli and Bernard Tourancheau. BIP: a new protocol designed for high performance networking on
Myrinet. In Workshop PC-NOW, IPPS/SPDP98, Orlando, USA, 1998.

4. S. Parkin, M. Lauria, A. Chien, et. al., High Performance Virtual Machines (HPVM): Clusters with
Supercomputing APIs and Performance. Eighth SIAM Conference on Parallel Processing for Scientific
Computing (PP97); March 1997

5. Myricom, The GM Message Passing System, 10/16/1999.

6. J. Nieplocha, B. Carpenter, ARMCI: A Portable Remote Memory Copy Library for Distributed Array Libraries
and Compiler Run-time Systems, Proc. RTSPP IPPS/SDP’99, 1999.

7. K. Parzyszek, J. Nieplocha and R. Kendall, A Generalized Portable SHMEM Library for High Performance
Computing, Proceedings Int. Conf. on Parallel and Distributed Computing and Systems PDCS-2000, to appear.

8. R. Bariuso, Allan Knies, SHMEM's User's Guide, Eagan, MN; Cray Research, Inc., SN-2516, rev. 2.2, 1994.

9. D. Perkovic and P. J. Keleher. Responsiveness without Interrupts, The 13th International Conference on
Supercomputing, June 1999.

10. J. Nieplocha, J. Ju, T.P. Straatsma, A multiprotocol communication support for the global address space
programming model on the IBM SP, Proc. EuroPar-2000, Springer Verlag LNCS-1900, 2000.

11. D. Perkovic and P. J. Keleher. Responsiveness without Interrupts, The 13th International Conference on
Supercomputing, June 1999.

12. J. Hsieh, T. Leng, V. Mashayekhi, R. Rooholamini, Architectural and Performance Evaluation of GigaNet and
Myrinet Interconnects on Clusters of Small-Scale SMP Servers, Proceedings SC2000,
http://www.sc2000.org/techpapr/papers/pap.pap294.pdf

13. M. Banikazemi, R. Govindaraju, R. Blackmore, D. K. Panda, Implementing Efficient MPI on LAPI for the IBM
RS/600 SP systems: Experiences and Performance Evaluation, IPPS’99., 1999.

14. Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IP: TCP/IP at Near-Gigabit Speeds, 1999 USENIX
Technical Conference. June 1999.

15. K. Moldeklev and P. Gunningberg, "How a large ATM MTU causes deadlocks in TCP data transfers",
IEEE/ACM Trans. on Networking, vol3, No. 4, Aug. 1995.

16. L. A. Giannini, A. Chien, A Software Architecture for Global Address space on communication on Clusters:
Put/Get on Fast Messages, 7th Int. IEEE Symp on High Performance Distributed Computing, HPDC-7, 1998.

17. S.C. Woo, M.O. Ohara, E. Torrie, J.P. Singh, A. Gupta. "The SPLASH-2 Programs: Characterization and Meth-
odological Considerations". Proc. 22nd International Symposium on Computer Architecture, 1995.

18. High Performance Computational Chemistry Group, "NWChem, A Computational Chemistry Package for
Parallel Computers, Version 4.0" (2000), Pacific Northwest National Laboratory, Richland, WA,
http://www.emsl.pnl.gov:2080/docs/nwchem

