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1. Introduction 
1.1 Overview 

The Global Arrays (GA) toolkit provides a shared memory style programming environment in the 
context of distributed array data structures (called "global arrays" ). From the user perspective, a global 
array can be used as if it was stored in shared memory. All details of the data distribution, addressing, 
and data access are encapsulated in the global array objects. Information about the actual data 
distribution and locality can be easily obtained and taken advantage of whenever data locality is 
important. The primary target architectures for which GA was developed are massively-parallel 
distributed-memory and scalable shared-memory systems. 

GA divides logically shared data structures into "local" and "remote" portions. It recognizes variable 
data transfer costs required to access the data depending on the proximity attributes. A local portion of 
the shared memory is assumed to be faster to access and the remainder (remote portion) is considered 
slower to access. These differences do not hinder the ease-of-use  since the library provides uniform 
access mechanisms for all the shared data regardless where the referenced data is located. In addition, 
any processes can access a local portion of the shared data directly/in-place like any other data in  
process local  memory. Access to other portions of the shared data must be done through the GA library 
calls.  

GA was designed to complement rather than substitute the message-passing model, and it allows the 
user to combine shared-memory and message-passing styles of programming in the same program. GA 
inherits an execution environment from a message-passing library (w.r.t. processes, file descriptors etc.) 
that started the parallel program.  

GA is implemented as a library with C and Fortran-77 bindings, and there have been also a Python and 
C++ interfaces (included starting with the release 3.2) developed. Therefore, explicit library calls are 
required to use the GA model in a parallel C/Fortran program.  

A disk extension of the Global Array library is supported by its companion library called Disk Resident 
Arrays (DRA). DRA maintains array objects in secondary storage and allows transfer of data to/from 
global arrays.  

1.2 Basic Functionality 

The basic shared memory operations supported include get, put, scatter and gather. They are 
complemented by atomic read-and-increment, accumulate (reduction operation that combines data in 
local memory with data in the shared memory location), and lock operations. However, these operations 
can only be used to access data in global arrays rather than arbitrary memory locations. At least one 
global array has to be created before data transfer operations can be used. These GA operations are truly 
one-sided/unilateral and will complete regardless of actions taken by the remote process(es) that own(s) 
the referenced data. In particular, GA does not offer or rely on a polling operation or require inserting 
any other GA library calls to assure communication progress on the remote side. 

A programmer in the GA program has a full control over the distribution of global arrays. Both regular 
and irregular distributions are supported, see Section 3 for details.  

The GA data transfer operations use an array index-based interface rather than addresses of the shared 
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data. Unlike other systems based on global address space that support remote memory (put/get) 
operations, GA does not require the user to specify the target process/es where the referenced shared 
data resides -- it simply provides a global view of the data structures. The higher level array oriented 
API (application programming interface) makes GA easier to use, at the same time without 
compromising data locality control. The library internally performs global array index-to-address 
translation and then transfers data between appropriate processes. If necessary, the programmer is 
always able to inquire:  

� where and an element or array section is located, and  
� which process or processes own data in the specified array section.  

The GA toolkit supports four data types in Fortran: integer, real, double precision, and double complex. 
In the C interface, int, long, float, double and struct double complex are available. Underneath, the 
library represents the data using C datatypes. For the Fortran users, it means that some arrays created in 
C for which there is no appropriate datatype mapping to Fortran (for example on the Cray T3E Fortran 
real is not implemented whereas C float is) might not be accessible. In all the other cases, the dataype 
representation is transparent. 

The supported array dimensions range from one to seven. This limit follows the Fortran convention. The 
library can be reconfigured to support more than 7-dimensions but only through the C interface.  

1.3 Programming Model 

The Global Arrays library supports two programming styles: task-parallel and data-parallel. The GA 
task-parallel model of computations is based on the explicit remote memory copy: The remote portion of 
shared data has to be copied into the local memory area of a process before it can be used in 
computations by that process. Of course, the "local" portion of shared data can always be accessed 
directly thus avoiding the memory copy. 

  
The data distribution and locality control are provided to the programmer. The data locality information 
for the shared data is also available. The library offers a set of operations for management of its data 
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structures, one-sided data transfer operations, and supportive operations for data locality control and 
queries. The GA shared memory consistency model is a result of a compromise between the ease of use 
and a portable performance. The load and store operations are guaranteed to be ordered with respect to 
each other only if they target overlapping memory locations. The store operations (put, scatter) and 
accumulate complete locally before returning i.e., the data in the user local buffer has been copied out 
but not necessarily completed at the remote side. The memory consistency is only guaranteed for:  

�  multiple read operations (as the data does not change),  
�  multiple accumulate operations (as addition is commutative), and  
�  multiple disjoint put operations (as there is only one writer for each element).  

The application can manage consistency of its data structures in other cases by using lock, barrier, and 
fence operations available in the library. 

The data-parallel model is supported by a set of collective functions that operate on global arrays or their 
portions. Underneath, if any interprocessor communication is required, the library uses remote memory 
copy (most often) or collective message-passing operations.  

1.4 Application Guidelines 

These are some guidelines regarding suitability of the GA for different types of applications. 

When to use GA:  

Algorithmic Considerations 

� applications with dynamic and irregular communication patterns  
� for calculations driven by dynamic load balancing  
� need 1-sided access to shared data structures  
� need high-level operations on distributed arrays and/or for out-of-core 

array-based algorithms (GA + DRA)  

Usability Considerations 

� data locality must be explicitly available  
� when coding in message passing becomes too complicated  
� when portable performance is important  
� need object orientation without the overhead of C++  

When not to use GA: 

Algorithmic Considerations 

� for systolic, or nearest neighbor communications with regular communication patters  
� when synchronization associated with cooperative point-to-point message passing is 

needed (e.g., Cholesky factorization in Scalapack)  

Usability Considerations 

� when interprocedural analysis and compiler parallelization is more effective  
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� a parallel language support is sufficient and robust compilers available  
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2. Writing, Building and Running GA Programs 
The web pagewww.emsl.pnl.gov:2080/docs/global/support.html  contains updated information 
about using GA on different platforms. Please refer to this page frequently for most recent updates and 
platform information. 

2.1 Platform and Library Dependencies 

2.1.1 Supported Platforms 

� IBM SP, CRAY T3E/J90/SV1, SGI Origin, Fujitsu VX/VPP, Hitachi  
� Cluster of workstations: Solaris, IRIX, AIX, HPUX, Digital/Tru64 Unix, Linux, NT  
� Standalone uni- or multi-processor workstations or servers  
� Standalone uni- or multi-processor Windows NT workstations or servers  

Older versions of GA supported some additional (now obsolete) platforms such as: IPSC, KSR, 
PARAGON, DELTA, CONVEX. They are not supported in the newer (>3.1) versions because we do 
not have access to these systems. We recommend using GA 2.4 on these platforms. 

For most of the platforms, there are two versions available: 32-bit and 64-bit.  
  

Platform  32-bit 
TARGET name 

64-bit TARGET 
name  Remarks 

Sun ultra  SOLARIS  SOLARIS64  64-bit version added in GA 3.1
IBM RS/6000  IBM  IBM64  64-bit version added in GA 3.1

IBM SP  LAPI  not available
no support yet for user-space 
communication in the 64-bit mode by 
IBM

Compaq/DEC 
alpha  not available  DECOSF

HP pa-risc  HPUX  HPUX64  64-bit version added in GA 3.1
Linux x86, ultra, 
powerpc  LINUX  not available

Linux IA64 
(Itanium)  not available  LINUX64

Linux alpha  not available  LINUX64
64-bit version added in GA 3.1;   
Compaq compilers rather than GNU 
required

Cray T3E  not available  CRAY-T3E
Cray J90  not available  CRAY-YMP
Cray SV1  not available  CRAY-SV1
SGI IRIX mips  SGI_N32, SGI  SGITFP
Hitachi SR8000  HITACHI  not available

Fujitsu VPP  FUJITSU-VPP  FUJITSU-VPP64  64-bit version added in GA 3.1

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html



To aid development of fully portable applications, in 64-bit mode Fortran integer datatype is 64-bits. It 
is motivated by 1) the need of applications to use very large data structures and 2) Fortran INTEGER*8 
not being fully portable. The 64-bit representation of integer datatype is accomplished by using 
appropriate Fortran compiler flag.  

Because of limited interest in heterogenous computing among known us GA users, the Global Array 
library still does not support heterogeonous platforms. This capability can be added if required by new 
applications.  
   

2.1.2 Selection of the communication network for ARMCI 

Some cluster installations can be equipped with a high performance network which offer instead, or in 
addition to TCP/IP some special communication protocol, for example GM on Myrinet network. To 
achieve high performance in Global Arrays, ARMCI must be built to use these protocols in its 
implementation of one-sided communication. Starting with GA 3.1, this is accomplished by setting an 
environment variable ARMCI_NETWORK to specify the protocol to be used. In addition, the it might 
be necessary to provide location for the header files and library path corresponding to location of s/w 
supporting the appropriate protocol API, see g/armci/config/makecoms.h for details.  
  

The port on top of Myrinet has been partially optimized. The Giganet/VIA port has not been optimized 
yet and is included on the experimental basis.  

2.1.3 Selection of the message-passing library 

As explained in Section 3, GA works with either MPI or TCGMSG message-passing libraries. That 
means that GA applications can use either of these interfaces. Selection of the message-passing library 
takes place when GA is built. Since the TCGMSG library is small and compiles fast, it is included with 
the GA distribution package and built on Unix workstations by default so that the package can be built 
as fast and as convenientlly to the user as possible. There are three possible configurations for running 
GA with the message-passing libraries: 

1. with TCGMSG  
2. with MPI and TCGMSG emulation library: TCGMSG-MPI, that implements functionality of 

TCGMSG using MPI. In this mode, the message passing library is initialized using a TCGMSG 
PBEGIN(F) call which internally references MPI_Initialize. To enable this mode, define the 
environmental variable USE_MPI.  

3. directly with MPI. In this mode, GA program should contain MPI initialization calls instead of 
PBEGIN(F).  

systems

Network  Protocol name  ARMCI_NETWORK setting  Supported platforms
Ethernet  TCP/IP  SOCKETS   (optional/default)  workstation clusters
Quadrics  Elan/Shmem  QUADRICS  Linux (alpha,x86,IA64), Compaq 
Myrinet GM GM  Linux  (x86,ultra,IA64)
Giganet cLAN  VIA  VIA Linux (x86)
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For the MPI versions, the optional environmental variables MPI_LIB and MPI_INCLUDE are used to 
point to the location of the MPI library and include directories if they are not in the standard system 
location(s). GA programs are started with the mechanism that any other MPI programs use on the given 
platform. 

The recent versions of MPICH (an MPI implementation from ANL/Mississippi State) keep the MPI 
header files in more than one directory and provide compiler wrappers that implicitly point to the 
appropriate header files. One can :  

� use MPI_INCLUDE by expanding the string with another directory component prefixed with "-
I" (you are passing include directory names as a part of compiler flags), or (starting with GA 3.1) 
separated by comma "," and withot the prefix, OR  

� use MPI aware compiler wrappers e.g., mpicc and mpif77 to build GA right out of the box on 
UNIX workstations: 

make FC=mpif77 CC=mpicc 

One disadvantage of the second approach it that GA makefile in some circumstances might be not able 
to determine which compiler (e.g., GNU or PGI) is called underneath by the MPICH compiler wrappers. 
Since different compilers provide different Fortran/C interface, the package might fail to build. This 
problem is most likely to occur on non-Linux Unix systems with non-native compilers (e.g., gcc). 

On Windows NT, the current version of GA was tested with WMPI, an NT implementation derived 
from MPICH in Portugal.  

2.1.3 Dependencies on other software 

In addition to the message-passing library, GA requires: 

� MA (Memory Allocator), a library for managment of local memory;  
� ARMCI, a one-sided communication library that GA uses as its run-time system;  
� BLAS library is required for the eigensolver and ga_dgemm;  
� LAPACK library is required for the eigensolver (a subset is included with GA, which is built into 

liblinalg.a);  

 
GA may also depend on other software depending on the functions being used.  

� GA eigensolver, ga_diag, is a wrapper for the eigensolver from the PEIGS library; (Please contact 
George Fann <gi_fann@pnl.gov> about PEIGS)  

� SCALAPACK, PBBLAS, and BLACS libraries are required for ga_lu_solve, ga_cholesky, 
ga_llt_solve, ga_spd_invert, ga_solve. If these libraries are not installed, the named operations 
will not be available.  

� If one would like to generate trace information for GA calls, an additional library libtrace.a is 
required, and the -DGA_TRACE define flag should be specified for C and Fortran compilers.  

2.2 Writing GA Programs 

C programs that use Global Arrays should include files `global.h',  'ga.h',  `macdecls.h'. Fortran 
programs should include the files `mafdecls.fh', `global.fh'. Fortran source must be preprocessed as a 
part of compilation. 
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The GA program should look like:  

� When GA runs with MPI  
  

   
   
   
   

       Fortran          C 

      call mpi_init(..)   MPI_Init(..)      ! start MPI  
      call ga_initialize() GA_Initialize()   ! start global arrays  
      status = ma_init(..) MA_Init(..)       ! start memory allocator 

      .... do work           .... do work  

      call ga_terminate() GA_Terminate()    ! tidy up global arrays  
      call mpi_finalize() MPI_Finalize()    ! tidy up MPI  
      stop                                      ! exit program  

� When GA runs with TCGMSG or TCGMSG-MPI  
  

   
   
   
   
   

       Fortran           C 

      call pbeginf()     PBEGIN_(..)       ! start TCGMSG  
      call ga_initialize() GA_Initialize()   ! start global arrays  
      status = ma_init(..) MA_Init(..)       ! start memory allocator 

      .... do work       .... do work  

      call ga_terminate() GA_Terminate()    ! tidy up global arrays  
      call pend()        PEND_()           ! tidy up tcgmsg  
      stop                                     ! exit program  
   

The ma_init call looks like :  

      status = ma_init(type, stack_size, heap_size)  

and it basically just goes to the OS and gets stack_size+heap_size elements of size type. The amount of 
memory MA allocates need to be sufficient for storing global arrays on some platforms. Please refer to 
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section 3.3.1 for the  details and information on more advanced usage of MA in GA programs.  

2.3 Building GA Programs 

Use GNU make to build the GA library and application programs on Unix and Microsoft nmake on 
Windows. The structure of the available makefiles are 

� GNUmakefile: Unix makefile  
� MakeFile: Windows NT makefile  
� Makefile.h:  definitions & include symbols  

The user needs to specify TARGET in the GNUmakefile or on the command line when calling make. 
The library and test programs should be built by calling make in the current directory. Valid TARGETs 
are listed by by calling make in the top level distribution directory on UNIX family of systems when 
TARGET is not defined. On Windows, WIN32, CYGNUS and INTERIX (previously known as 
OpenNT) are supported. 

One could affect which compilers and compiler flags the package uses (instead of the predefined 
defaults) by specifying them for GNU make on the command line;  

� CC - name of the C compiler (e.g., gcc, cc, or ccc )  
� FC - name of the Fortran compiler (e.g., g77, f90, mpif77 or fort)  
� COPT - optimization or debug flags for the C compiler (e.g., -g, -O3)  
� FOPT - optimization or debug flags for the Fortran compiler (e.g., -g, -O1)  

For example, 

gmake FC=f90 CC=ccc FOPT=-O4 COPT=-g 

Note that GA provides only Fortran-77 interfaces. To use and compile with a Fortran 90 compiler, it has 
to support a subset of Fortran-77. 

2.3.1 Unix Environment 

To build GA with the MPI, user needs to define environmental variables USE_MPI, MPI_LIB and 
MPI_INCLUDE which should point to the location of the MPI library and include directories. 

   Example: using csh/tcsh (assume using MPICH installed in /usr/local on IBM workstation)  

      setenv USE_MPI y  
      setenv MPI_LOC /usr/local/mpich  
      setenv MPI_LIB $MPI_LOC/lib/rs6000/ch_shmem  
      setenv MPI_INCLUDE $MPI_LOC/include  

Additionally, if the TCGMSG-MPI library is not needed, the make/environmental variable 
MSG_COMMS should be defined as MSG_COMMS = MPI.  

Interface routines to ScaLAPACK are only available with MPI, and of course with ScaLAPACK. The 
user is required to define the environment variables USE_SCALAPACK, and the location of 
ScaLAPACK & Co. libraries in variable SCALAPACK.  
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   Example: using csh/tcsh  

      setenv USE_SCALAPACK y  
      setenv SCALAPACK '-L/msrc/proj/scalapack/LIB/rs6000  
                -lscalapack -lpblas -ltools -lblacsF77cinit -lblacs'  
      setenv USE_MPI y  

Since there are certain interdependencies between blacs and blacsF77cinit, some system might require 
specification of -lblacs twice to fix the unresolved external symbols from these libs.  

To build the library, type  
        make or gmake  

To build an application based on GA located in g/global/testing, for example, the application's name 
is app.c (or app.F, app.f), type  
        make app.x or gmake app.x  

Please refer to compiler flags in file g/global/Makefile.h to make sure that Fortran and C 
compiler flags are consistent with flags use to compile your application. This may be critical when 
Fortran compiler flags are used to change the default length of the integer datatype.  

2.3.2 Windows NT 

To buid GA on Windows NT, MS Power Fortran 4 or DEC Visual Fortran 5 or later, and MS Visual C 4 
or later are needed. Other compilers might need the default compilation flags modified. When 
commercial Windows compilers are not available, one can choose to use CYGNUS or INTERIX and 
build it as any other Unix box using GNU compilers. 

First of all, one needs to set environment variables (same as in Unix enviroment). GA needs to know 
where find the MPI include files and libraries. To do this, select the Environment tab under the Control 
Panel, then set the variables to point to the location of MPI, for example for WMPI on disk D:  

set MPI_INCLUDE as d:\Wmpi\Include  
set MPI_LIB as d:\Wmpi\Console 

Make sure that the dynamic link libraries required by the particular implementation of MPI are copied to 
the appropriate location for the system DLLs. For WMPI, copy VWMPI.dll to \winnt. 

In the top directory do,  

nmake 

The GA test.exe program can be built in the g\global\testing directory: 

nmake test.exe 

In addition,  the HPVM package from UCSD offers the GA interface  in the NT/Myrinet cluster 
environment. 

GA could be built on Windows 95/98. However, due to the DOS shell limitations, the top level 
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NTmakefile will not work. Therefore, each library has to be made separately in its own directory. The 
environment variables referring to MPI can be hardcoded in the NT makefiles.  

2.3.3 Writing and building new GA programs  

For small programs contained in a single file, the most convenient approach is to put your program file 
into the g/global/testing directory. The existing GNU make suffix rules would build an executable 
with the ".x" suffix from any C or Fortran source file. You do not have to modify makefiles in 
g/global/testing at all.  For example, if your program is contained in myfile.c or myfile.F and you 
place it in that directory, all you need to do to create an executable called myfile.x  is to type: make 
myfile.x .  

Windows nmake is not as powerful as GNU make - you would need to modify the NT makefile.  

This approach obviously is not feasible for large packages that contain multiple source files and 
directories. In that case you need to provide apropriate definitions  in your makefile:  

� to header files located in the include directory, g/include, where all public header files are 
copied in the process of building GA  

� add references to libglobal.a (Unix) global.lib (Windows) and libma.a (Unix) ma.lib 
(Windows) in g/lib/$(TARGET) and for the message-passing libraries  

� follow compilation flags for the GA test programs in GNU and Windows makefiles 
g/config/makefile.h. The recommended approach is to include g/config/makefile.h in your 
makefile.  

Starting with GA 3.1, one could simplify linking of applications by including 
g/armci/config/makecoms.h and g/armci/config/makemp.h that define all the necessary platform 
specific libraries that are required by GA. 

2.4 Running GA Programs 

Assume the app.x had already been built. To run it, 

1. On MPPs, such as Cray T3E, or IMB SP  
Use appropriate system command to specify the number of processors, load and run the programs. 

Example: to run on four processors on the Cray T3E, use  

       mpprun -n 4 app.x  
   

2. On shared memory systems and (network of) workstations (including linux cluster)  
If the app.x is built based on MPI, run the program the same way as any other MPI programs. 

Example: to run on four processes on SGI workstation, use  

      mpirun -np 4 app.x, or  
      app.x -np 4  
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If app.x is built based on TCGMSG(not including, Fujitsu, Cray J90, and Windows, because there 
are no native ports of TCGMSG), to execute the program on Unix workstations/servers, one 
should use the 'parallel' program (built in tcgmsg/ipcv4.0). After building the application, a 
file called 'app.x.p' would also be generated (If there is not such a file, make it: make 
app.x.p). This file can be edited to specify how many processors and tasks to use, and how to 
load the executables. Make sure that 'parallel' is accessible (you might copy it into your 'bin' 
directory).  To execute, type:  

       parallel app.x  
   

3. On Microsoft NT, there is no support for TCGMSG, which means you can only build your 
application based on MPI. Run the application program the same way as any other MPI programs. 
For, WMPI you need to create the .pg file.  
  

   
   
   
   
   

Example:  
   

  R:\nt\g\global\testing> start /b test.exe 
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3. Initialization and Termination 
For historical reasons (the 2-dimensional interface was developed first), many operations have two 
interfaces, one for two dimensional arrays and the other for arbitrary dimensional (one- to seven- 
dimensional, to be more accurate) arrays. The latter can definitely handle two dimensional arrays as 
well. The supported data types are integer,double precision, and double complex. Global Arrays provide 
C and Fortran interfaces in the same (mixed-language) program to the same array objects. The 
underlying data layout is based on the Fortran convention. 

GA programs require message-passing and Memory Allocator (MA) libraries to work. Global Arrays is 
an extension to the message-passing interface. GA internally does not allocate local memory from the 
operating system - all dynamically allocated local memory comes from MA. We will describe the details 
of memory allocation later in this section. 

3.1 Message Passing 

The first version of Global Arrays was released in 1994 before robust MPI implementations became 
available. At that time, GA worked only with TCGMSG, a message-passing library that one of the GA 
authors (Robert Harrison) had developed before. In 1995, support for MPI was added.  At the present 
time, the GA distribution still includes the TCGMSG library for backward compatibility purposes, and 
because it is small, fast to comple, and  provides a minimal message-passing support required by GA 
programs. The user can enable the MPI-compatible version of GA by defining USE_MPI environment 
variable before compiling the GA  toolkit. On systems where vendors provide MPI with interoperable C 
and Fortran interfaces, there is no advantage in compiling or using TCGMSG. 

The GA toolkit needs the following functionality from any message-passing library it runs with: 

� initialization and termination of processes in an SPMD (single-program-multiple-data) program,  
� synchronization,  
� functions that return number of processes and calling process id,  
� broadcast,  
� reduction operation for integer and double datatypes, and  
� a function to abort the running parallel job in case of an error.  

The message-passing library has to be initialized before the GA library and terminated after the GA 
library is terminated. 

GA provides two functions ga_nnodesand ga_nodeidthat return the number of processes and the 
calling process id in a parallel program. Starting with release 3.0, these functions return the same  values 
as their message-passing counterparts. In earlier releases of GA on clusters of workstations, the mapping 
between GA and message-passing process ids were nontrivial. In these cases, the  
ga_list_nodeidfunction (now obsolete) was used to describe the actual mapping. 

Although message-passing libraries offer their own barrier (global synchronization) function, this 
operation does not wait for completion of the outstanding GA communication operations. The GA 
toolkit offers a ga_syncoperation that can be used for synchronization, and it has the desired effect of 
waiting for all the outstanding GA operations to complete. 

3.2 Memory Allocation 
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GA uses a  very limited amount of statically allocated memory to maintain its data structures and state. 
Most of the memory is allocated dynamically as needed, primarily to store data in newly allocated 
global arrays or as temporary buffers internally used in some operations, and deallocated when the 
operation  completes. 

There are two flavors of dynamically allocated memory in GA: shared memory and local memory. 
Shared memory is a special type of memory allocated from the operating system (UNIX and Windows) 
that can be shared between different user processes (MPI tasks). A process that attaches to a shared 
memory segment can access it as if it was local memory. All the data in shared memory is directly 
visible to every process that attaches to that segment. On shared memory systems and clusters of SMP 
(symmetritc multiprocessor) nodes, shared memory is used to store global array data and is allocated by 
the Global Arrays run-time system called ARMCI. ARMCI uses shared memory to optimize 
performance and avoid explicit interprocessor communication within a single shared memory system or 
an SMP node. ARMCI allocates shared memory from the operating system in large segments and then 
manages memory in each segment in response to the GA allocation and deallocation calls. Each segment 
can hold data in many small global arrays. ARMCI does not return shared memory segments to the 
operating system until the program terminates (calls ga_terminate). 

On systems that do not offer shared-memory capabilities or when a program is executed in a serial 
mode, GA uses local memory to store data in global arrays. 

All of the dynamically allocated local memory in GA comes from its companion library,  the Memory 
Allocator (MA) library. MA  allocates and manages local memory using stack and heap disciplines. Any 
buffer allocated and deallocated by a GA operation that needs temporary buffer space comes from the 
MA stack. Memory to store data in global arrays comes fromheap. MA has additional features useful for 
program debugging such as: 

� left and right guards: they are stamps that detect if a memory segment was overwritten by the 
application,  

� named memory segments, and  
� memory usage statistics for the entire program.  

Explicit use of MA by the application  to manage its non-GA local data structures is not necessary but 
encouraged. Because MA is used implicitly  by GA, it has to be initialized before the first global array is 
allocated. The MA_init function requires users to specify memory for heap and stack. This is because 
MA: 

� allocates from the operating system only one segment equal in size to the sum of heap and stack,  
� manages both allocation schemes using memory coming from opposite ends of the same segment, 

and  
� the boundary between free  stack and heap memory is dynamic.  

It is not important what the stack and heap size argument values are as long as the aggregate memory 
consumption by a program does not exceed their sum at any given time. 

3.2.1 How to determine what the values of MA stack and heap size should be? 

The answer to this question depends on the run-time environment of the program including the 
availability of shared memory. A part of GA initialization involves initialization of the ARMCI run-time 
library. ARMCI dynamically determines if the program can use shared memory based on the 
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architecture type and current configuration of the SMP cluster. For example, on uniprocessor nodes of 
the IBM SP shared memory is not used whereas on the SP with SMP nodes it is. This decision is made 
at run-time. GA reports the information about the type of memory used with the function ga_uses_ma
(). This function returns false when shared memory is used and true when MA is used. 

Based on this information, a programmer who cares about the efficient usage of memory has to consider 
the amount of memory per single process (MPI task) needed to store data in global arrays to set the 
heap  size argument value in ma_init. The amount of stack space depends on the GA operations used 
by the program (for example ga_mulmat_patch orga_dgemmneed several MB of buffer space to 
deliver good performance) but it probably should not be less than 4MB. The stack space is only used 
when a GA operaion is executing and it is returned to MA when it completes. 

3.3 GA Initialization 

The GA library is initialized after a message-passing library and before MA. It is possible to initialize 
GA after MA but it is not recommended: GA must first be initialized to determine if it needs shared or 
MA memory for storing distributed array data. There are two alternative functions to initialize GA: 

   Fortran  subroutine ga_initialize()  
   C        void GA_Initialize()  
   C++      void GA::Initialize(int argc, char **argv) 

and 

   Fortran  subroutine ga_initialize_ltd(limit)  
   C        void GA_Initialize_ltd(size_t limit) 
   C++      void GA::Initialize(int argc, char **argv, size_t limit) 

The first interface allows GA to consume as much memory as the application needs to allocate new 
arrays. The latter call allows the programmer to establish and enforce a limit within GA on the memory 
usage. 

Note: In GA++, there is an additional functionality as follows:  
   C++      void GA::Initialize(int argc, char *argv[], unsigned long heapSize, 
unsigned long stackSize, int type, size_t limit=0) 

3.3.1 Limiting Memory Usage by Global Arrays 

GA offers an optional mechanism that allows a programmer to limit the aggregate memory consumption 
used by GA for storing Global Array data. These limits apply regardless of the type of memory used for 
storing global array data.They do not apply to temporary buffer space GA might need to use to execute 
any particular operation. The limits are given per process (MPI task) in bytes. If the limit is set, GA 
would not allocate more memory in global arrays that would exceed the specified value - any calls to 
allocate new arrays that would simply fail (return false). There are two ways to set the limit: 

1. at initialization time by calling ga_initialize_ltd, or  
2. after initialization by calling the function  

   Fortran  subroutine ga_set_memory_limit(limit)  
   C        void GA_Set_memory_limit(size_t limit) 
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   C++      void GA::GAServices::setMemoryLimit(size_t limit) 

It is encouraged that the user choose the first option, even though the user can intialize the GA normally 
and set the memory limit later. 

Example: Initialization of MA and setting GA memory limits 

call ga_initialize()  
if (ga_uses_ma()) then  

        status = ma_init(MT_DBL, stack, heap+global)  
    else  
        status = ma_init(mt_dbl,stack,heap)  
        call ga_set_memory_limit(ma_sizeof
(MT_DBL,global,MT_BYTE))  
    endif  
    if(.not. status) ... !we got an error condition here  

In this example,  depending on the value returned from ga_uses_ma(), we either increase the heap 
size argument by the amount of memory for global arrays or set the limit explicitly through 
ga_set_memory_limit(). When GA memory comes from MA we do not need to set this limit 
through the GA interface since MA enforces its memory limits anyway. In both cases, the maximum 
amount of memory acquired from the operating system is capped by the valuestack+heap+global. 
  

3.4 Termination 

The normal way to terminate a GA program is to call the function 

   Fortran  subroutine ga_terminate()  
   C        void GA_Terminate()  
   C++      void GA::Terminate()  

The programmer can also abort a running program for example as part of handling a programmatically 
detected error condition by calling the function  

   Fortran  subroutine ga_error(message, code) 
   C        void GA_Error(char *message, int code) 
   C++      void GA::GAServices::error(char *message, int code) 

3.5 Creating arrays 

There are two way to create new arrays: 

1. From scratch, for regular distribution, using 

   n-d Fortran  logical function nga_create(type, ndim, dims, array_name, 
                           chunk, g_a) 
   2-d Fortran  logical function ga_create(type, dim1, dim2, array_name, 
                           chunk1, chunk2, g_a) 
   C            int NGA_Create(int type, int ndim, int dims[], char *array_name, 
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                           int chunk[]) 
   C++          GA::GlobalArray* GA::GAServices::createGA(int type, int ndim,  
                           int dims[], char *array_name, int chunk[]) 

or for regular distribution, using 

   n-d Fortran  logical function nga_create_irreg(type, ndim, dims, array_name, 
                                                  map, nblock, g_a) 
   2-d Fortran  logical function ga_create_irreg(type, dim1, dim2, array_name, 
                                            map1, nblock1, map2, nblock2, g_a) 
   C            int NGA_Create_irreg(int type, int ndim, int dims[], 
   C++          GA::GlobalArray* GA::GAServices::createGA(int type, int ndim,  
                                 int dims[], char *array_name, int map[], int block
[]) 

2. Based on a template (an existing array) with the function 

   Fortran  logical function ga_duplicate(g_a, g_b, array_name) 
   C        int GA_Duplicate(int g_a, char *array_name) 
   C++      int GA::GAServices::duplicate(int g_a, char *array_name) - or - 
   C++      GA::GlobalArray* GA::GAServices::createGA(int g_a, char *array_name) 

In this case, the new array inherits all the properties such as distribution, datatype and dimensions from 
the existing array. 

With the regular distribution, the programmer can specify block size for none or any dimension. If block 
size is not specified the library will create a distribution that attempts to assign the same number of 
elements to each processor (for static load balancing purposes). The actual algorithm used is based on 
heuristics. 

 

With the irregular distribution, the programmer specifies distribution points for every dimension using 
map array argument. The library creates an array with the overall distribution that is a Cartesian product 
of distributions for each dimension. A specific example is given in the documentation. 
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If an array cannot be created, for example due to memory shortages or an enforced memory 
consumption limit, these calls return failure status. Otherwise an integer handle is returned. This handle 
represents a global array object in all operations involving that array. This is the only piece of 
information the programmer needs to store for that array.  All the properties of the object (data type, 
distribution data, name, number of dimensions and values for each dimension) can be obtained from the 
library based on the handle at any time, see Section 7.4. It is not necessary to keep track of this 
information explicitly in the application code. 

Note that regardless of the distribution type at most one block can be owned/assigned to a processor. 
 
3.5.1 Creating Arrays with Ghost Cells 

Individual processors ordinarily only hold the portion of global array data that is represent by the lo and 
hi index arrays returned by a call to nga_distribution or that have been set using the 
nga_create_irreg call. However, it is possible to create global arrays where this data is padded by 
a boundary region of array elements representing portions of the global array residing on other 
processors. These boundary regions can be updated with data from neighboring processors by a call to a 
single GA function. To create global arrays with these extra data elements, referred to in the following 
as ghost cells, the user needs to call either the functions:  

   n-d Fortran  logical function nga_create_ghosts(type, dims, width, array_name,  
                                                   chunk, g_a) 
   C            int int NGA_Create_ghosts(int type, int ndim, int dims[], int width
[],  
                                      char *array_name, int chunk[]) 
   C++          int GA::GAServices::createGA_Ghosts(int type, int ndim, int dims[], 

 
                                      int width[], char *array_name, int chunk[]) 

   n-d Fortran  logical function nga_create_ghosts_irreg(type, dims, width,  
                                      array_name, map, block, g_a) 
   C            int int NGA_Create_ghosts_irreg(int type, int ndim, int dims[],  
                         int width[], char *array_name, int map[], int block[]) 
   C++          int GA::GAServices::createGA_Ghosts(int type, int ndim, int dims[], 

 
                         int width[], char *array_name, int map[], int block[]) 

These two functions are almost identical to the nga_create and nga_create_irreg functions 
described above. The only difference is the parameter array width. This is used to control the width of 
the ghost cell boundaries in each dimension of the global array. Different dimensions can be padded 
with different numbers of ghost cells, although it is expected that for most applications the widths will 
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be the same for all dimensions. If the width has been set to zero for all dimensions, then these two 
functions are completely equivalent to the functionsnga_create and nga_create_irreg. 
To illustrate the use of these functions, an ordinary global array is shown below. The boundaries 
represent the data that is held on each processor. 
 

 

For a global array with ghost cells, the data distribution can be visualized as follows: 

 
Each processor holds “visible” data, corresponding to the data held on each processor of an ordinary 
global array, and “ghost cell” data, corresponding to neighboring points in the global array that would 
ordinarily be held on other processors. This data can be updated in a single call to nga_update, 
described under the collective operations section of the user documentation. Note that the ghost cell data 
duplicates some portion of the data in the visible portion of the global array. The advantage of having 
the ghost cells is that this data ordinarily resides on other processors and can only be retrieved using 
additional calls. To access the data in the ghost cells, the user must use the nga_access_ghosts 
function described in Section 6.1. 
 
3.6 Destroying arrays 

Global arrays can be destroyed by calling the function 

   Fortran  subroutine ga_destroy(g_a)  
   C        void GA_Destroy(int g_a) 
   C++      void GA::GlobalArray::destroy()  

that takes as its argument a handle representing a valid global array. It is a fatal error to call ga_destroy 
with a handle pointing to an invalid array. 
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All active global arrays are destroyed implicitly when the user callsga_terminate. 
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4. One-sided Operations 
Global Arrays provide one-sided, noncollective communication operations that allow to access data in 
global arrays without cooperation with the process or processes that hold the referenced data. These 
processes do not know what data items in their own memory are being accessed or updated by remote 
processes. Moreover, since the GA interface uses global array indices to reference nonlocal data, the 
calling process does not even have to know process ids and location in memory where the refernenced 
data resides. 

The one-sided operations that Global Arrays provide can be summarized into three categories:  
   

4.1 Put/Get 

Put and get are two powerful operations for interprocess communication, performing remote write and 
read. Because of their one-sided nature, they don't need cooperation from the process(es) that owns the 
data. The semantics of these operations do not require the user to specify which remote process or 
processes own the accessed portion of a global array. The data is simply accessed as if it were in shared 
memory. 

Put copies data from the local array to the global array section, which is  

   n-D Fortran  subroutine nga_put(g_a, lo, hi, buf, ld)  
   2-D Fortran  subroutine ga_put(g_a, ilo, ihi, jlo, jhi, buf, ld)  
   C            void NGA_Put(int g_a, int lo[], int hi[], void *buf, int ld[])  
   C++          void GA::GlobalArray::put(int lo[], int hi[], void *buf, int ld[])  

All the arguments are provided in one call: lo and hi specify where the data should go in the global 
array; ld specifies the stride information of the local array buf. The local array should have the same 
number of dimensions as the global array; however, it is really required to present the n-dimensional 
view of the local memory buffer, that by itself might be one-dimensional.  

The operation is transparent to the user, which means the user doesn't have to worry about where the 
region defined by lo and hi is located. It can be in the memory of one or many remote processes, 
owned by the local process, or even mixed (part of it belongs to remote processes and part of it belongs 
to a local process).  

Get is the reverse operation of put. It copies data from a global array section to the local array. It is  

   n-D Fortran  subroutine nga_get(g_a, lo, hi, buf, ld)  
   2-D Fortran  subroutine ga_get(g_a, ilo, ihi, jlo, jhi, buf, ld)  
   C            void NGA_Get(int g_a, int lo[], int hi[], void *buf, int ld[])  

Remote blockwise write/read ga_put, ga_get

Remote  atomic update
ga_acc, ga_read_inc, 
ga_scatter_acc

Remote elementwise 
write/read

ga_scatter, ga_gather
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   C++          void GA::GlobalArray::get(int lo[], int hi[], void *buf, int ld[])  

Similar to put, lo and hi specify where the data should come from in the global array, and ld specifies 
the stride information of the local array buf. The local array is assumed to have the same number of 
dimensions as the global array. Users don't need to worry about where the region defined by lo and hi  
is physically located.  

Example:  

For a ga_get operation transferring data from the (11:15,1:5) section of a 2-dimensional 15 x10 global 
array into a ocal buffer 5 x10 array we have: (In Fortran notation)  

lo={11,1}, hi={15,5}, ld={10}  
   
   

4.2 Accumulate and read-and-increment 

It is often useful in a put operation to combine the data moved to the target process with the data that 
resides at that process, rather then replacing the data there. Accumulate and read_inc perform atomic 
remote update to a patch (a section of the global array) in the global array and an element in the global 
array, respectively. They don't need the cooperation of the process(es) who owns the data. Since the 
operations are atomic, the same portion of a global array can be referenced by these operations issued  
by multiple processes and the GA will assure the correct and consistent result of the updates. 

Accumulate combines the data from the local array with data in the global array section, which is  

   n-D Fortran  subroutine nga_acc(g_a, lo, hi, buf, ld, alpha)  
   2-D Fortran  subroutine ga_acc(g_a, ilo, ihi, jlo, jhi, buf, ld, alpha)  
   C            void NGA_Acc(int g_a, int lo[], int hi[], void *buf, int ld[],  
                             void *alpha)  
   C++          void NGA::GlobalArray::acc(int lo[], int hi[], void *buf, int ld[],  
                             void *alpha)  

The local array is assumed to have the same number of dimensions as the global array. Users don't need 
to worry about where the region defined by lo and hi is physically located.  The function performs  

    global array section (lo[], hi[]) += alpha * buf  

  

   15  

     

10 10   
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Read_inc remotely updates a particular element in the global array, which is  

   n-D Fortran  subroutine nga_read_inc(g_a, subscript, inc)  
   2-D Fortran  subroutine ga_read_inc(g_a, i, j, inc)  
   C            long NGA_Read_inc(int g_a, int subscript[], long inc)  
   C++          long GA::GlobalArray::readInc(int subscript[], long inc)  

This function applies to integer arrays only. It atomically reads and increments an element in an integer 
array. It performs  

    a(subsripts) += inc  

and returns the original value (before the update) of a(subscript).  

4.3 Scatter/Gather 

Scatter and gather transfer a specified set of elements to and from global arrays. They are one-sided: 
that is they don't need the cooperation of the process(es) who own the referenced elements in the global 
array. 

Scatter puts array elements into a global array, which is  

   n-D Fortran  subroutine nga_scatter(g_a, v, subsarray, n)  
   2-D Fortran  subroutine ga_scatter(g_a, v, i, j, n)  
   C            void NGA_Scatter(int g_a, void *v, int *subsarray[], int n)  
   C++          void GA::GlobalArray::scatter(void *v, int *subsarray[], int n)  

It performs (in C notation)  

    for(k=0; k<= n; k++) {  
        a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]... = v[k];  
    }  

Example:  

Scatter the 5 elements into a 10x10 global array  

    Element 1    v[0] = 5    subsArray[0][0] = 2  
                             subsArray[0][1] = 3  
    Element 2    v[1] = 3    subsArray[1][0] = 3  
                             subsArray[1][1] = 4  
    Element 3    v[2] = 8    subsArray[2][0] = 8  
                             subsArray[2][1] = 5  
    Element 4    v[3] = 7    subsArray[3][0] = 3  
                             subsArray[3][1] = 7  
    Element 5    v[4] = 2    subsArray[4][0] = 6  
                             subsArray[4][1] = 3  

After the scatter operation, the five elements would be scattered into the global array as shown in the 

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html



following figure.  
   

Gather is the reverse operation of scatter. It gets the array elements from a global array into a local 
array.  

   n-D Fortran  subroutine nga_gather(g_a, v, subsarray, n)  
   2-D Fortran  subroutine ga_gather(g_a, v, i, j, n)  
   C        void NGA_Gather(int g_a, void *v, int *subsarray[], int n)  
   C++      void GA::GlobalArray::gather(void *v, int *subsarray[], int n)  

It performs (in C notation)  

      for(k=0; k<= n; k++){  
             v[k] = a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]...;  
      }  
   

4.4 Periodic Interfaces 

Periodic interfaces to the one-sided operations have been added to Global Arrays in version 3.1 to  
support some computational fluid dynamics problems on multidimensional grids. They provide an index 
translation layer that allows to use put,get, and accumulate operations possibly extending beyond the 
boundaries of a global array. The references that are outside of the boundaries are wrapped up inside the 
global array. To better illustrate these operations, look the following example: 

Example:  
Assume  a two dimensional global array g_a with dimensions  5 X 5.  

0 1 2 3 4 5 6 7 8 9
0           
1           
2    5       
3     3   7   
4           
5           
6    2       
7           
8      8     
9           
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To access a patch [2:4,-1:3], one can assume that the array is wrapped over in the second dimension, as 
shown in the following figure  

 
Therefore the patch [2:4, -1:3] is 

                                17    22    2    7    12  
                                18    23    3    8    13  
                                19    24    4    9    14  

Periodic operations extend the boudary of each dimension in two directions, toward lower bound and 
torward  
the upper bound. For any dimension with lo(i) to hi(i), where 1 < i < ndim, it extends the range  
    from  
            [lo(i) : hi(i)]  
    to  
            [(lo(i)-1-(hi(i)-lo(i)+1)) : (lo(i)-1)], [lo(i) : hi(i)], and [(hi(i)+1) : (hi(i)+1+(hi(i)-lo(i)+1))], or  
            [(lo(i)-1-(hi(i)-lo(i)+1)) : (hi(i)+1+(hi(i)-lo(i)+1))].  

Even though the patch span in a much large range, the length must always be less, or equals to (hi(i)-lo
(i)+1)).  

Example:  
For a 2 x 2 array as shown in the following figure, where the dimensions are [1:2, 1:2], periodic 
operations would look the range of each dimensions as [-1:4, -1:4].  
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Current version of GA supports three periodic operations. They are  

� periodic get,  
� periodic put, and  
� periodic acc.  

Periodic Get copies data from a global array section to a local array, which is almost the same as regular 
get, except the indices of the patch can be outside the boundaries of each dimension. 

   Fortran  subroutine nga_periodic_get(g_a, lo, hi, buf, ld)  
   C        void NGA_Periodic_get(int g_a, int lo[], int hi[], void *buf, int ld[])  
   C++      void GA::GlobalArray::periodicGet(int lo[], int hi[], void *buf, int ld
[])  

Similar to regular get, lo and hi specify where the data should come from in the global array, and ld 
specifies the stride information of the local array buf.  

Example:  
Let us look at the first example in this section. It is 5 x 5 two dimensional global array. Assume that the 
local buffer is an 4x3 array.   

Also ssume that  
        lo[0] = -1, hi[0] = 2,  
        lo[1] = 4,  hi[1] = 6,  and  
        ld[0] = 4 

After the periodic get, the local buffer buf would be  

                19    24    4  
                20    25    5  
                16    21    1  
                17    22    2  

Periodic Put is the reverse operations of Periodic Get. It copies data from the local array to the global 
array section, which is  

   Fortran  subroutine nga_periodic_put(g_a, lo, hi, buf, ld)  
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   C        void NGA_Periodic_put(int g_a, int lo[], int hi[], void *buf, int ld[])  
   C++      void GA::GlobalArray::periodicPut(int lo[], int hi[], void *buf, int ld
[])  

Similar to regular put, lo and hi specify where the data should go in the global array; ld specifies the 
stride information of the local array buf.  

Periodic Put/Get (also include the Accumulate, which will be discussed later in this section) divide the 
patch into several smaller patches. For those smaller patches that are outside the global aray, adjust the 
indices so that they rotate back to the original array. After that call the regular Put/Get/Accumulate, for 
each patch, to complete the operations.  

Example:  
Look at the example for periodic get. Because it is a 5 x 5 globla array, the valid indices for each 
dimension are  

        dimension 0: [1 : 5]  
        dimension 1: [1 : 5]  

The specified lo and hi are apparently out of the range of each dimension:  

        dimemsion 0: [-1 : 2]  -->  [-1 : 0]   -- wrap back --> [4 : 5]  
                                    [ 1 : 2]   ok  

        dimension 1: [ 4 : 6]  -->  [ 4 : 5]   ok  
                                    [ 6 : 6]   -- wrap back --> [1 : 1]  

Hence, there will be four smaller patches after the adjustment. They are  

        patch 0:  [4 : 5, 4 : 5]  
        patch 1:  [4 : 5, 1 : 1]  
        patch 2:  [1 : 2, 4 : 5]  
        patch 3:  [1 : 2, 1 : 1]  

as shown in the following figure  

 

Of course the destination addresses of each samller patch in the local buffer also need to be calculated.  

Similar to regular Accumulate, Periodic Accumulate combines the data from the local array with data in 
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the global array section, which is  

   Fortran  subroutine nga_periodic_acc(g_a, lo, hi, buf, ld, alpha)  
   C        void NGA_Periodic_acc(int g_a, int lo[], int hi[], void *buf, int ld[],  
                             void *alpha)  
   C++      void GA::GlobalArray::periodicAcc(int lo[], int hi[], void *buf, int ld
[],  
                             void *alpha)  

The local array is assumed to have the same number of dimensions as the global array. Users don't need 
to worry about where the region defined by lo and hi is physically located.  The function performs  

    global array section (lo[], hi[]) += alpha * buf  

Example:  
Let us look at the same example as above. There is 5 x 5 two dimensional global array. Assume that the 
local buffer is an 4x3 array.   

Also ssume that  
        lo[0] = -1, hi[0] = 2,  
        lo[1] = 4,  hi[1] = 6,  and  
        ld[0] = 4. 

The local buffer buf is  

                1    5    9  
                4    6    5  
                3    2    1  
                7    8    2  

and the alpha = 2.  

After the Periodic Accumulate operation, the global array will be  

 
 
  

4.5 Non-blocking operations 

The non-blocking operations (get/put/accumulate) are derived from the blocking interface by adding a 
handle argument that identifies an instance of the non-blocking request. Nonblocking operations initiate 
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a communication call and then return control to the application. A return from a nonblocking operation 
call indicates a mere initiation of the data transfer process and the operation can be completed locally by 
making a call to the wait (e.g. nga_nbwait) routine. 

The wait function completes a non-blocking one-sided operation locally. Waiting on a nonblocking put 
or an accumulate operation assures that data was injected into the network and the user buffer can be 
now be reused. Completing a get operation assures data has arrived into the user memory and is ready 
for use. Wait operation ensures only local completion. Unlike their blocking counterparts, the 
nonblocking operations are not ordered with respect to the destination. Performance being one reason, 
the other reason is that by ensuring ordering we incur additional and possibly unnecessary overhead on 
applications that do not require their operations to be ordered. For cases where ordering is necessary, it 
can be done by calling a fence operation. The fence operation is provided to the user to confirm remote 
completion if needed.  

 
The non-blocking APIs are derived from the blocking interface by adding a handle argument that 
identifies an instance of the non-blocking request. 

   n-D Fortran  subroutine nga_nbput(g_a, lo, hi, buf, ld, nbhandle) 
   n-D Fortran  subroutine nga_nbget(g_a, lo, hi, buf, ld, nbhandle) 
   n-D Fortran  subroutine nga_nbacc(g_a, lo, hi, buf, ld, alpha, nbhandle) 
 
   2-D Fortran  subroutine ga_nbput(g_a, ilo, ihi, jlo, jhi, buf, ld, nbhandle)  
   2-D Fortran  subroutine ga_nbget(g_a, ilo, ihi, jlo, jhi, buf, ld, nbhandle)  
   2-D Fortran  subroutine ga_nbacc(g_a, ilo, ihi, jlo, jhi, buf, ld, alpha, 
nbhandle) 
 
   C            void NGA_NbPut(int g_a, int lo[], int hi[], void *buf, int ld[], 
ga_nbhdl_t* nbhandle)  
   C            void NGA_NbGet(int g_a, int lo[], int hi[], void *buf, int ld[], 
ga_nbhdl_t* nbhandle)  
   C            void NGA_NbAcc(int g_a, int lo[], int hi[], void *buf, int ld[], 
void *alpha, ga_nbhdl_t* nbhandle) 

 
Example: Let us take a simple case for illustration. Say, there are two global arrays i.e. one array 
stores pressure and the other stores temperature. If there are two computation phases (first phase 
computes pressure and second phase computes temperature), then we can overlap communication 
with computation, thus hiding latency. 

      . . . . . . . . 
      nga_get (get_pressure_array) 
 
      nga_nbget(initiates data transfer to get temperature_array, and returns immediately) 
 
      compute_pressure() /* hiding latency - communication is overlapped with computation */ 
 
      nga_nbwait(temperature_array - completes data transfer) 
 
      compute_temperature()  
      . . . . . . . . 
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   C++          void GA::GlobalArray::nbPut(int lo[], int hi[], void *buf, int ld
[], ga_nbhdl_t* nbhandle)  
   C++          void GA::GlobalArray::nbGet(int lo[], int hi[], void *buf, int ld
[], ga_nbhdl_t* nbhandle)  
   C++          void GA::GlobalArray::nbAcc(int lo[], int hi[], void *buf, int ld
[], void *alpha, ga_nbhdl_t* nbhandle)  
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5. Interprocess Synchronization 
Global Arrays provide three types of synchronization calls to support different synchronization styles.  
  

5.1 Lock and Mutex 

Lock works together with mutex. It is a simple synchronization mechanism used to protect a critical 
section.To enter a critical section, typically, one needs to do: 

    1. Create mutexes  
    2. Lock on a mutex  
    3. ...  
        Do the exclusive operation in the critical section  
        ...  
    4. Unlock the mutex  
    5. Destroy mutexes  

The function  

   Fortran  logical function ga_create_mutexes(number)  
   C        int GA_Create_mutexes(int number)  
   C++      int GA::GAServices::createMutexes(int number)  

creates a set containing the number of mutexes. Only one set of mutexes can exist at a time. Mutexes 
can be created and destroyed as many times as needed.  Mutexes are numbered: 0, ..., number-1.  

The function  

   Fortran  logical function ga_destroy_mutexes()  
   C        int GA_Destroy_mutexes()  
   C++      int GA::GAServices::destroyMutexes()  

destroys the set of mutexes created with ga_create_mutexes.  

Both ga_create_mutexes and ga_destroy_mutexes are collective operations.  

The functions  

   Fortran  subroutine ga_lock(int mutex)  
            subroutine ga_unlock(int mutex)  
   C        void GA_lock(int mutex)  

Lock with 
mutex:

is useful for a shared memory model. One can lock a mutex, to exclusively access a 
critical section.

Fence: guarantees that the Global Array operations issued from the calling process are complete. 
The fence operation is local.

Sync: is a barrier. It synchronizes processes and ensures that all Global Array operations 
completed. Sync operation is collective.
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            void GA_unlock(int mutex)  
   C++      void GA::GAServices::lock(int mutex)  
            void GA::GAServices::unlock(int mutex)  

lock and unlock a mutex object identified by the mutex number, respectively. It is a fatal error for a 
process to attempt to lock a mutex which has already been locked by this process, or unlock a mutex 
which has not been locked by this process.  

Example 1:  

Use one mutex and the lock mechanism to enter the critical section.  

         status = ga_create_mutexes(1)  
         if(.not.status) then  
            call ga_error('ga_create_mutexes failed ',0)  
         endif  
         call ga_lock(0)  

            ... do something in the critical section  
            call ga_put(g_a, ...)  
            ...  

         call ga_unlock(0)  
         if(.not.ga_destroy_mutexes()) then  
            call ga_error('mutex not destroyed',0)  
   

5.2 Fence 

Fence blocks the calling process until all the data transfers corresponding to the Global Array operations 
initiated by this process complete. The typical scenario that it is being used is 

    1. Initialize the fence  
    2. ...  
            Global array operations  
        ...  
    3. Fence  

This would guarantee the operations between step 1 and 3 are complete.  

The function  

   Fortran  subroutine ga_init_fence()  
   C        void GA_Init_fence()  
   C++      void GA::GAServices::initFence()  

Initializes tracing of completion status of data movement operations.  

The function  
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   Fortran  subroutine ga_fence()  
   C        void GA_Fence()  
   C++      void GA::GAServices::fence()  

blocks the calling process until all the data transfers corresponding to GA operations called after 
ga_init_fence complete.  

ga_fence must be called after ga_init_fence. A barrier, ga_sync, assures completion of all 
data transfers and implicitly cancels outstanding ga_init_fence. ga_init_fence and 
ga_fence must be used in pairs, multiple calls to ga_fence require the same number  of 
corresponding ga_init_fence calls. ga_init_fence/ga_fence pairs can be nested.  

Example 1:  

Since ga_put might return before the data reaches the final destination ga_init_fence and 
ga_fence allow the process to wait until the data is actually moved:  

           call ga_init_fence()  
           call ga_put(g_a, ...)  
           call ga_fence()  

Example 2:  

ga_fence works for multiple GA operations.  

           call ga_init_fence()  
           call ga_put(g_a, ...)  
           call ga_scatter(g_a, ...)  
           call ga_put(g_b, ...)  
           call ga_fence()  

The calling process will be blocked until data movements initiated by two calls to ga_put and one 
ga_scatter complete.  

5.3 Sync 

Sync is a collective operation. It acts as a barrier, which synchronizes all the processes and ensures that 
all the Global Array operations are complete at the call. 

The function is  

   Fortran  subroutine ga_sync()  
   C        void GA_Sync()  
   C++      void GA::GAServices::sync()  

Sync should be inserted as necessary. With many sync calls, the application performance would suffer.  
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6. Collective Array Operations 
Global Arrays provide functions for collective array operations, targeting both whole arrays and patches 
(portions of global arrays). Collective operations require all the processes to make the call. In the 
underlying implementation, each process deals with its local data. These functions include: 

� basic array operations,  
� linear algebra operations, and  
� interfaces to third party software packages.  

6.1 Basic Array Operations 

Global Arrays provide several mechanisms to manipulate contents of the arrays. One can set all the 
elements in an array/patch to a specific value, or as a special case set to zero.  Since GA does not 
explicitly initialize newly created arrays, these calls are useful for initialization of an array/patch. (To fill 
the array with different values for each element, one can choose the one sided operation putor each 
process can initialize its local portion of an array/patch like ordinary local memory). One can also scale 
the array/patch by a certain factor, or copy the contents of one array/patch to another. 

6.1.1 Whole Arrays 

These functions apply to the entire array. 

The function 

  Fortran  subroutine ga_zero(g_a)  
  C        void GA_Zero(int g_a) 
  C++      void GA::GlobalArray::zero()  

sets all the elements in the array to zero.  

To assign a single value to all the elements in an array, use the function 

  Fortran  subroutine ga_fill(g_a, val) 
  C        void GA_Fill(int g_a, void *val) 
  C++      void GA::GlobalArray::fill(void *val) 

It sets all the elements in the array to the value val. The val must have the same data type as that of the 
array.  

The function 

   Fortran  subroutine ga_scale(g_a, val) 
   C        voidGA_Scale(int g_a, void *val) 
   C++      voidGA::GlobalArray::scale(void *val) 

scales all the elements in the array by factorval. Again the val must be the same data type as that of the 
array itself.  

The above three functions are dealing with one global array, to set values or change all the elements  
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together. The following functions are for copying data between two arrays. 

The function 

   Fortran subroutine ga_copy(g_a, g_b) 
   C       voidGA_Copy(int g_a, int g_b) 
   C++     voidGA::GlobalArray::copy(const GA::GlobalArray * g_a) 

copies the contents of one array to another. The arrays must be of the same data type and have the same 
number of elements. 

For global arrays containing ghost cells, the ghost cell data can be filled in with the corresponding data 
from neighboring processors using the command 

   n-d Fortran subroutine ga_copy(g_a, g_b) 
   C           voidGA_Copy(int g_a, int g_b) 
   C++         voidGA::GlobalArray::copy(const GA::GlobalArray * g_a) 

 
   n-d Fortran subroutine ga_update_ghosts(g_a) 
   C           voidGA_Update_ghosts(int g_a) 
   C++         void GA::GlobalArray::updateGhosts() 

This operation updates the ghost cell data by assuming periodic, or wrap-around, boundary conditions 
similar to those described for the nga_periodic_get operations described above. The wrap-around 
conditions are always applied, it is up to the individual application to decide whether or not the data in 
the ghost cells should be used. The update operation is illustrated below for a simple 4x2 global array 
distributed across two processors. The ghost cells are one element wide in each dimension. 

 
 

 

 
   n-d Fortran logical function nga_update_ghosts_dir(g_a, dimension, idir, flag) 
   C           int NGA_Update_ghosts_dir(int g_a, int dimension, int idir, int 

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html



cflag) 
   C++         int GA::GlobalArray::updateGhostsDir(int dimension, int idir, int 
cflag) 

This function can be used to update the ghost cells along individual directions. 

It is designed for algorithms that can overlap updates with computation. The variable dimension 
indicates which coordinate direction is to be updated (e.g. dimension = 1 would correspond to the y axis 
in a two or three dimensional system), the variable idir can take the values +/-1 and indicates whether 
the side that is to be updated lies in the positive or negative direction, and cflag indicates whether or not 
the corners on the side being updated are to be included in the update. The following calls would be 
equivalent to a call to GA_Update_ghosts for a 2-dimensional system:  

status = NGA_Update_ghost_dir(g_a,0,-1,1); 
status = NGA_Update_ghost_dir(g_a,0,1,1); 
status = NGA_Update_ghost_dir(g_a,1,-1,0); 
status = NGA_Update_ghost_dir(g_a,1,1,0); 

The variable cflag is set equal to 1 (or non-zero) in the first two calls so that the corner ghost cells are 
update, it is set equal to 0 in the second two calls to avoid redundant updates of the corners. Note that 
updating the ghosts cells using several independent calls to the nga_update_ghost_dir functions is 
generally not as efficient as using GA_Update_ghosts unless the individual calls can be effectively 
overlapped with computation. This is a collective operation. 

6.1.2 Patches 

GA provides a set of  operations on segments of the global arrays, namely patch operations. These 
functions are more general, in a sense they can apply to the entire array(s). As a matter of fact, many of 
the Global Array collective operations  are based on the patch operations, for instance, the GA_Printis 
only a special case of NGA_Print_patch, called by setting the bounds of the patch to the entire 
global array. There are two interfaces for Fortran, one for two dimensional and the other for n-
dimensional (one to seven). The (n-dimensional) interface can surely handle the two dimensional case as 
well. It is available for backward compatibility purposes. The functions dealing with n-dimensional 
patches use the "nga"prefix  and those dealing with two dimensional patches start with the "ga" 
prefix. 

The function 

   Fortran     subroutine nga_zero_patch(g_a, alo, ahi) 
   C           void NGA_Zero_patch(int g_a, int lo[] int hi[]) 
   C++         void GA::GlobalArray::zeroPatch(int lo[] int hi[]) 

is similar to ga_zero, except that instead of applying to entire array, it sets only the region defined by lo 
and hi to zero.  

One can assign a single value to all the elements in a patch with the function: 

  n-DFortran  subroutine nga_fill_patch(g_a, lo, hi, val) 
  2-DFortran  subroutine ga_fill_patch(g_a, ilo, ihi, jlo, jhi, val) 
  C           voidNGA_Fill_patch(int g_a, int lo[] int hi[], void *val) 
  C++         voidGA::GlobalArray::fillPatch(int lo[] int hi[], void *val) 
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The loand hi defines the patch and thevalis the value to set. 

The function 

  n-DFortran  subroutine nga_scale_patch(g_a, lo, hi, val) 
  2-DFortran  subroutine ga_scale_patch(g_a, ilo, ihi, jlo, jhi, val) 
  C           voidNGA_Scale_patch(int g_a, int lo[] int hi[], void *val) 
  C++         voidGA::GlobalArray::scalePatch(int lo[] int hi[], void *val) 

scales the patch defined by lo andhi by the factor val. 

The copy patch operation is one of the fundamental and frequently used functions. The function 

  n-DFortran  subroutine nga_copy_patch(trans, g_a, alo, ahi, 
                                                g_b, blo, bhi) 
  2-DFortran  subroutine ga_copy_patch(trans, g_a, ailo, aihi, ajlo, 
                                      ajhi, g_b, bilo, bihi, bjlo, bjhi) 
  C           void NGA_Copy_patch(char trans, int g_a , int alo[], int ahi[], 
                             int g_b, int blo[], int bhi[]) 
  C++         voidGA::GlobalArray::copyPatch(char trans, const GA::GlobalArray* 
g_a, 
                         int alo[], int ahi[], int blo[], int bhi[]) 

copies one patch defined by alo and ahi in one global array g_ato another patch defined by blo 
andbhiin another global array g_b. The current implementation requires that the source patch and 
destination patch must be on different global arrays. They must also be the same data type. The patches 
may be of different shapes, but the number of elements must be the same. During the process of 
copying, the transpose operation can be performed by specifying trans. 

Example: Assume that there two 8x6 Global Arrays, g_aandg_b,distributed on three processes. The 
operation of nag_copy_patch(Fortran notation), from 

g_a: alo = {2, 2}, ahi = {4, 5} 

to 

g_b: blo = {3, 4}, bhi = {6, 6} 

and 

trans = 0 

involves reshaping. Iis illustrated in the following figure. 
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One step further, if one also want to perform the transpose operation during the copying, i.e. set trans 
= 1, it will look like: 

 
If there is no reshaping or transpose, the operation can be fast (internally callingnga_put). Otherwise, 
it would be slow (internally calling nga_scatter, where extra time is spent on preparing the indices). 
Also note that extra memory is required to hold the indices if  the operation involves reshaping or 
transpose. 

6.2 Linear Algebra 

Global arrays provide three linear algebra operations: addition, multiplication, and dot product. There 
are two sets of functions, one for the whole array and the other for the patches. 

6.2.1 Whole Arrays 

The function 

   Fortran subroutine ga_add(alpha, g_a, beta, g_b, g_c) 
   C       voidGA_Add(void *alpha, int g_a, void *beta,int g_b, int g_c) 
   C++     voidGA::GlobalArray::add(void *alpha, const GA::GlobalArray* g_a,  
                                  void *beta, const GA::GlobalArray* g_b) 

adds two arrays, g_a and g_b, and saves the results to g_c. The two source arrays can be scaled by 
certain factors. This operation requires the two source arrays have the same number of elements and the 
same data types, but the arrays can have different shapes or distributions. g_ccan also be g_a or g_b. It 
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is encouraged to use this function when the two source arrays are identical in distributions and shapes, 
because of its efficiency. It would be less efficient if the two source arrays are different in distributions 
or shapes. 

Matrix multiplication operates on two matrices, therefore the array must be two dimensional. The 
function 

   Fortran subroutine ga_dgemm(transa, transb, m, n, k, 
                                alpha, g_a, g_b, beta, g_c ) 
   C       voidGA_Dgemm(char ta, char tb, int m, int n, int k, 
                          double alpha, int g_a, int g_b, 
                          double beta, int g_c ) 
   C++     voidGA::GlobalArray::dgemm(char ta, char tb, int m, int n, int k, 
                          double alpha, const GA::GlobalArray* g_a,  
                          const GA::GlobalArray* g_b, double beta) 

Performs one of the matrix-matrix operations: 

         C := alpha*op( A )*op( B ) + beta*C, 

where op( X ) is one of 

         op( X ) = X   or   op( X ) = X', 

alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k 
matrix, op( B ) a k by n matrix and C anm by n matrix. 

On entry, transa specifies the form of op( A ) to be used in the matrix multiplication 
as follows: 
              ta = 'N' or 'n', op( A ) = A. 
              ta = 'T' or 't', op( A ) = A'. 

The function 

   Fortran  integer          function ga_idot(g_a, g_b) 
            double precision functionga_ddot(g_a, g_b) 
            double complex   function ga_zdot(g_a, g_b) 
   C        long          GA_Idot(int g_a, int g_b) 
            double        GA_Ddot(int g_a, int g_b) 
            DoubleComplex GA_Zdot(int g_a, int g_b) 
   C++      long          GA::GlobalArray::idot(const GA::GlobalArray* g_a) 
            double        GA::GlobalArray::ddot(const GA::GlobalArray* g_a) 
            DoubleComplex GA::GlobalArray::zdot(const GA::GlobalArray* g_a) 

computes the element-wise dot product of two arrays. It is available as three separate functions, 
corresponding to integer, double precision and double complex data types. 

The following functions apply to the 2-dimensional whole arrays only. There are no corresponding 
functions for patch operations. 

The function 
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   Fortran   subroutine ga_symmetrize(g_a)  
   C         void GA_Symmetrize(int g_a) 
   C++       void GA::GlobalArray::symmetrize()  

symmetrizes matrix A represented with handle g_a:A = .5 * (A+A'). 

The function 

   Fortran  subroutine ga_transpose(g_a, g_b) 
   C        void GA_Transpose(int g_a, int g_b) 
   C++      void GA::GlobalArray::transpose(const GA::GlobalArray* g_a) 

transposes a matrix: B = A'. 

6.2.2 Patches 

The functions 

   n-DFortran  subroutine nga_add_patch(alpha, g_a, alo, ahi, 
                                         beta,  g_b, blo, bhi, 
                                                g_c, clo, chi) 
   2-DFortran  subroutine ga_add_patch(alpha, g_a, ailo, aihi, ajlo, ajhi, 
                                        beta,  g_b, bilo, bihi, bjlo, bjhi, 
                                               g_c, cilo, cihi, cjlo, cjhi) 
   C           void NGA_Add_patch(void *alpha, int g_a, int alo[], int ahi[], 
                               void *beta,  int g_b, int blo[], int bhi[], 
                                            int g_c, int clo[], int chi[]) 
   C++         void GA::GlobalArray::addPatch(void *alpha, const GA::GlobalArray* 
g_a, 
                               int alo[], int ahi[], void *beta,  const 
GA::GlobalArray* g_b, 
                               int blo[], int bhi[], int clo[], int chi[]) 
  

add element-wise two patches and save the results into another patch. Even though it supports the 
addition of two patches with different distributions or different shapes (the number of elements must be 
the same), the operation can be expensive, because there can be extra copies which effect memory 
consumption. The two source patches can be scaled by a factor for the addition. The function is smart 
enough to detect the case that the patches are exactly the same but the global arrays are different in 
shapes. It handles the case as if for the arrays were identically distributed, thus the performance will not 
suffer. 

The matrix multiplication is the only operation on array patches that is restricted to the  two dimensional 
domain, because of its nature. It works for double and double complex data types. The prototype is 

   Fortran subroutine ga_matmul_patch(transa, transb, alpha, beta, 
                                       g_a, ailo, aihi, ajlo, ajhi, 
                                       g_b, bilo, bihi, bjlo, bjhi, 
                                       g_c, cilo, cihi, cjlo, cjhi) 
   C       void GA_Matmul_patch(char *transa, char* transb, void* alpha, void 
*beta, 
                          int g_a, int ailo, int aihi, int ajlo, int ajhi, 
                          int g_b, int bilo, int bihi, int bjlo, int bjhi, 
                          int g_c, int cilo, int cihi, int cjlo, int cjhi) 
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   C++     void GA::GlobalArray::matmulPatch(char *transa, char* transb, void* 
alpha, void *beta, 
                          const GlobalArray * g_a, int ailo, int aihi, int ajlo, 
int ajhi, 
                          const GlobalArray * g_b, int bilo, int bihi, int bjlo, 
int bjhi, 
                          int cilo, int cihi, int cjlo, int cjhi) 

It performs 

    C[cilo:cihi,cjlo:cjhi] := alpha* AA[ailo:aihi,ajlo:ajhi] *  
             BB[bilo:bihi,bjlo:bjhi] ) + beta*C[cilo:cihi,cjlo:cjhi]  

where AA = op(A), BB = op(B), and op( X ) is one of 

         op( X ) = X   or   op( X ) = X', 

Valid values for transpose argument: 'n', 'N', 't', 'T'. 

The dot operation computes the element-wise dot product of two (possibly transposed) patches. It is 
implemented as three separate functions, corresponding to integer, double precision and double complex 
data types. They are 

   n-DFortran  integer function nga_idot_patch(g_a, ta, alo, ahi, 
                                                g_b, tb, blo, bhi) 
               double precision functionnga_ddot_patch(g_a, ta, alo, ahi, 
                                                g_b, tb, blo, bhi) 
               double complex functionnga_zdot_patch(g_a, ta, alo, ahi, 
                                                g_b, tb, blo, bhi) 
 
   2-DFortran  integer function ga_idot_patch(g_a, ta, ailo, aihi, 
                        ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi) 
               double precision functionga_ddot_patch(g_a, ta, ailo, aihi, 
                        ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi) 
               double complex functionga_zdot_patch(g_a, ta, ailo, aihi, 
                        ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi) 
 
   C           Integer NGA_Idot_patch(int g_a, char* ta, int alo[], int ahi[], 
                                int g_b, char* tb, int blo[], int bhi[]) 
               double NGA_Ddot_patch(int g_a, char* ta, int alo[], int ahi[], 
                                int g_b, char* tb, int blo[], int bhi[]) 
               DoubleComplex NGA_Zdot_patch(int g_a, char* ta, int alo[], int ahi
[], 
                                int g_b, char* tb, int blo[], int bhi[]) 
 
   C++         IntegerGA::GlobalArray::idotPatch(const GA::GlobalArray* g_a,  
                                char* ta, int alo[], int ahi[], 
                                char* tb, int blo[], int bhi[]) 
               double GA::GlobalArray::ddotPatch(const GA::GlobalArray* g_a,  
                                char* ta, int alo[], int ahi[], 
                                char* tb, int blo[], int bhi[]) 
               DoubleComplex GA::GlobalArray::zdotPatch(const GA::GlobalArray* g_a, 

 
                                char* ta, int alo[], int ahi[], 
                                char* tb, int blo[], int bhi[]) 
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The patches should be of the same data types and have the same number of elements. Like the array 
addition, if the source patches have different distributions/shapes, or it requires transpose, the operation 
would be less efficient, because there could be extra copies and/or memory consumption. 
  

6.2.3 Element-wise operations 

These operations work on individual array elements rather than arrays as matrices in the sense of linear 
algebra operations. For example  multiplication of elements stored in arrays is a completely different 
operation than matrix multiplication. 
 
Fortransubroutine ga_abs_value(g_a)  
C           void GA_Abs_value(int g_a) 
C++       void GA::GlobalArray::absValue(int g_a) 

Take element-wise absolute value of the array. 
  

Fortran subroutine ga_abs_value_patch(g_a,  lo,  hi) 
C          void GA_Abs_value_patch(int g_a,  int lo[], int hi[]) 
C++      void GA::GlobalArray::absValuePatch(int lo[], int hi[]) 

Take element-wise absolute value of the patch. 

Fortran subroutine ga_add_constant(g_a,  alpha) 
C          void GA_Add_constant(int g_a, void* alpha) 
C++      void GA::GlobalArray::addConstant(void* alpha) 

Add the contant pointed by alpha to each element of the array. 
  

Fortran  subroutine ga_add_constant_patch(g_a, lo, hi, alpha) 
C            void GA_Add_constant_patch(int g_a, int lo[], int hi[], void*alpha) 
C++       void GA::GlobalArray::addConstantPatch(void* alpha) 

Add the contant pointed by alpha to each element of the patch. 
  

Fortran subroutine ga_recip(g_a)  
C          void GA_Recip(int g_a) 
C++      void GA::GlobalArray::recip()  

Take element-wise reciprocal of the array. 

Fortran subroutine ga_recip_patch(g_a, lo, hi) 
C           void GA_Recip_patch(int g_a, int lo[], int hi[]) 
C++      void GA::GlobalArray::recipPatch(int lo[], int hi[]) 

Take element-wise reciprocal of the patch. 
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Fortran subroutine ga_elem_multiply(g_a, g_b,  g_c) 
C           void GA_Elem_multiply(int g_a, int g_b, int g_c) 
C++      void GA::GlobalArray::elemMultiply(const GA::GlobalArray * g_a, 
                                                                       const GA::GlobalArray * g_b) 

Computes the element-wise product of the two arrays 
which must be of the same types and same number of 
elements. For two-dimensional arrays, 

            c(i, j)  = a(i,j)*b(i,j) 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine ga_elem_multiply__patch(g_a,  alo, ahi, g_b, blo, bhi, g_c, clo,chi) 
C          void GA_Elem_multiply__patch(int g_a, int alo[], int ahi[], int g_b, int blo[], 
                                                                int bhi[], int g_c, int clo[], int chi[]) 
C++      void GA::GlobalArray::elemMultiplyPatch( const GA::GlobalArray *  g_a, 
                                                                                int alo[], int ahi[], 
                                                                                const GA::GlobalArray *  g_b, int blo[], 
                                                                                int bhi[], int clo[], int chi[]) 

Computes the element-wise product of the two patches 
which must be of the same types and same number of 
elements. For two-dimensional arrays, 

            c(i, j)  = a(i,j)*b(i,j) 

The result (c) may replace one of the input arrays (a/b). 

Fortran subroutine ga_elem_divide(g_a,  g_b,  g_c) 
C          void GA_Elem_divide(Integer g_a, Integer g_b, Integer g_c) 
C++      void GA::GlobalArray::elemDivide(const GA::GlobalArray * g_a, 
                                                                      const GA::GlobalArray * g_b) 

Computes the element-wise quotient of the two arrays 
which must be of the same types and same number of 
elements. For two-dimensional arrays, 

            c(i, j)  = a(i,j)/b(i,j) 

The result (c) may replace one of the input arrays (a/b). If one of the elements of array g_b is zero, the 
quotient for the element of g_c will be set to 
GA_NEGATIVE_INFINITY. 
  

Fortran subroutine ga_elem_divide__patch(g_a,  alo,  ahi,  g_b,  blo,  bhi,  g_c,  clo, chi)  
C           void GA_Elem_divide__patch(int g_a, int alo[], int ahi[], int g_b, int blo[], 
                                                            int bhi[], int g_c, int clo[], int chi[]) 
C++      void GA::GlobalArray::elemDividePatch( const GA::GlobalArray *  g_a, 

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html



                                                                              int alo[], int ahi[], 
                                                                              const GA::GlobalArray *  g_b, int blo[], 
                                                                              int bhi[], int clo[], int chi[]) 

Computes the element-wise quotient of the two patches 
which must be of the same types and same number of 
elements. For two-dimensional arrays, 

            c(i, j)  = a(i,j)/b(i,j) 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine ga_elem_maximum(g_a, g_b, g_c) 
C           void GA_Elem_maximum(Integer g_a, Integer g_b, Integer g_c) 
C++      void GA::GlobalArray::elemMaximum(const GA::GlobalArray * g_a, 
                                                                          const GA::GlobalArray * g_b) 

Computes the element-wise maximum of the two arrays 
which must be of the same types and same number of 
elements. For two dimensional arrays, 

            c(i, j)  = max{a(i,j), b(i,j)} 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine ga_elem_maximum__patch(g_a, alo,  ahi,  g_b,  blo,  bhi,  g_c, clo,  chi)  
C           void GA_Elem_maximum__patch(int g_a, int alo[], int ahi[], int g_b, int blo[], 
                                                                    int bhi[], int g_c, int clo[], int chi[]) 
C++       void GA::GlobalArray::elemMaximumPatch(const GA::GlobalArray *  g_a, 
                                                                                  int alo[], int ahi[], 
                                                                                  const GA::GlobalArray *  g_b, int blo[], 
                                                                                  int bhi[], int clo[], int chi[]) 

Computes the element-wise maximum of the two patches 
which must be of the same types and same number of 
elements. For two-dimensional of noncomplex arrays, 

            c(i, j)  = max{a(i,j), b(i,j)} 

If the data type is complex, then 
            c(i, j).real = max{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0. 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine  ga_elem_minimum(g_a,  g_b,  g_c) 
C           void GA_Elem_minimum(Integer g_a, Integer g_b, Integer g_c); 
C++      void GA::GlobalArray::elemMinimum(const GA::GlobalArray * g_a, 
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                                                                       const GA::GlobalArray * g_b) 

Computes the element-wise minimum of the two arrays 
which must be of the same types and same number of 
elements. For two dimensional arrays, 

            c(i, j)  = min{a(i,j), b(i,j)} 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine  ga_elem_minimum__patch(g_a, alo, ahi, g_b, blo, bhi,  g_c, clo,  chi) 
C           void GA_Elem_minimum__patch(int g_a, int alo[], int ahi[], int g_b, 
                                                                int blo[], int bhi[], int g_c, int clo[], int chi[]) 
C++      void GA::GlobalArray::elemMinimumPatch(const GA::GlobalArray *  g_a, 
                                                                               int alo[], int ahi[], 
                                                                               const GA::GlobalArray *  g_b, int blo[], 
                                                                               int bhi[], int clo[], int chi[]) 

Computes the element-wise minimum of the two patches 
which must be of the same types and same number of 
elements. For two-dimensional of noncomplex arrays, 

            c(i, j)  = min{a(i,j), b(i,j)} 

If the data type is complex, then 
            c(i, j).real = min{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0. 

The result (c) may replace one of the input arrays (a/b). 
  

Fortran subroutine ga_shift_diagonal(g_a, c) 
C           void GA_Shift_diagonal(int g_a, void *c) 
C++      void GA::GlobalArray::shiftDiagonal(void *c) 

Adds this constant to the diagonal elements of the matrix. 

Fortran subroutine ga_set_diagonal(g_a,  g_v) 
C           void GA_Set_diagonal(int g_a, int g_v) 
C++      void GA::GlobalArray::setDiagonal(const GA::GlobalArray * g_v) 

Sets the diagonal elements of this matrix g_a with the elements of the vector g_v. 

Fortran subroutine ga_zero_diagonal( g_a) 
C           void GA_Zero_diagonal(int g_a) 
C++       void GA::GlobalArray::zeroDiagonal()  

Sets the diagonal elements of this matrix g_a with zeros. 
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Fortran subroutine ga_add_diagonal(g_a, g_v) 
C         void GA_Add_diagonal(int g_a, int g_v) 
C++        void GA::GlobalArray::addDiagonal(const GA::GlobalArray * g_v) 

Adds the elements of the vector g_v to the diagonal of this matrix g_a.  
  

Fortran subroutine ga_get_diag(g_a, g_v) 
C           void GA_Get_diag(int g_a, int g_v) 
C++        void GA::GlobalArray::getDiagonal(const GA::GlobalArray * g_v) 

Inserts the diagonal elements of this matrix g_a into the vector g_v. 
  

Fortran subroutine ga_scale_rows( g_a,  g_v) 
C           void GA_Scale_rows(int g_a, int g_v) 
C++        void GA::GlobalArray::scaleRows(const GA::GlobalArray * g_v) 

Scales the rows of this matrix g_a using the vector g_v. 
  

Fortran subroutine ga_scale_cols(g_a,  g_v) 
C           void GA_Scale_cols(int g_a, int g_v) 
C++      void GA::GlobalArray::scaleCols(const GA::GlobalArray * g_v) 

Scales the columns of this matrix g_a using the vector g_v. 
  

Fortran  subroutine ga_norm1(g_a, nm) 
C            void GA_Norm1(int g_a, double *nm) 
C++       void GA::GlobalArray::norm1(double *nm) 

Computes the 1-norm of the matrix or vector g_a. 
  

Fortran subroutine ga_norm_infinity(g_a,  nm) 
C           void GA_Norm_infinity(int g_a, double *nm) 
C++      void GA::GlobalArray::normInfinity(double *nm) 

Computes the 1-norm of the matrix or vector g_a. 
  

Fortran subroutinega_median( g_a,  g_b, g_c,  g_m) 
C           void GA_Median(int g_a, int g_b, int g_c, int g_m) 
C++      void GA::GlobalArray::median(const GA::GlobalArray * g_a, 
                                                            const GA::GlobalArray * g_b, 
                                                            const GA::GlobalArray * g_c) 

Computes the componentwise Median of three arrays g_a, g_b, and g_c, and  
stores the result in this array g_m.  The result (m) may replace one of the input arrays (a/b/c). 
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Fortran subroutine ga_median_patch(g_a, alo, ahi, g_b, blo, bhi, g_c, 
                                                            clo, chi, g_m,mlo, mhi) 
C           void GA_Median_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], 
                                                    int bhi[], int g_c, int clo[], int chi[], int g_m, 
                                                    int mlo[],int mhi[]) 
C++      void GA::GlobalArray::medianPatch(const GA::GlobalArray *  g_a, int alo[], int ahi[], 
                                                                     const GA::GlobalArray *  g_b, int blo[],  int bhi[], 
                                                                     const GA::GlobalArray * g_c, int clo[], int chi[], 
                                                                     int mlo[],int mhi[]) 

Computes the componentwise Median of three patches g_a, g_b, and g_c, and  
stores the result in this patch g_m.  The result (m) may replace one of the input patches (a/b/c). 
  

Fortran subroutine  ga_step_max(g_a,  g_b, step) 
C           void GA_Step_max(int g_a, int g_b, double *step) 
C++        void GA::GlobalArray::stepMax(const GA::GlobalArray *g_a, double *step) 

Calculates the largest multiple of a vector g_b that can be added 
to this vector g_a while keeping each element of this vector 
nonnegative. 
  

Fortran subroutine ga_step_max2( g_xx,  g_vv,  g_xxll,  g_xxuu, step2) 
C           void GA_Step_max2(int g_xx, int g_vv, int g_xxll, int g_xxuu, double *step2) 
C++      void GA::GlobalArray::stepMax2(const GA::GlobalArray *g_vv, 
                                                                  const GA::GlobalArray *g_xxll, 
                                                                  const GA::GlobalArray *g_xxuu, double *step2) 

Calculates the largest step size that should be used in a projected bound line search. 
  

Fortran subroutine  ga_step_max_patch(g_a, alo, ahi, g_b, blo, bhi,  step) 
C           void GA_Step_max_patch(int g_a, int *alo, int *ahi, int g_b, int *blo, 
                                                        int *bhi, double *step) 
C++      void GA::GlobalArray::stepMaxPatch(int *alo, int *ahi, const GA::GlobalArray * g_b, 
                                                                        int *blo, int *bhi, double *step) 

Calculates the largest multiple of a vector g_b that can be added 
to this vector g_a while keeping each element of this vector 
nonnegative. 
  

Fortran subroutine ga_step_max2_patch( g_xx, xxlo, xxhi, g_vv,vvlo, vvhi, g_xxll, 
                                                                xxlllo, xxllhi, g_xxuu, xxuulo, xxuuhi, step2) 
C           void GA_Step_max2_patch(int g_xx, int *xxlo, int *xxhi, int g_vv, 
                                                          int *vvlo, int *vvhi, int g_xxll, int *xxlllo, int *xxllhi, 
                                                          int g_xxuu, int *xxuulo, int *xxuuhi, double *step2) 
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C++      void GA::GlobalArray::stepMax2Patch(int *xxlo, int *xxhi, 
                                                                         const GA::GlobalArray * g_vv, int *vvlo, int *vvhi, 
                                                                         const GA::GlobalArray * g_xxll, int *xxlllo, int *xxllhi, 
                                                                         const GA::GlobalArray * g_xxuu, int *xxuulo, 
                                                                         int *xxuuhi, double *step2) 

Calculates the largest step size that should be used in a projected bound line search. 

6.3 Interfaces to Third Party Software Packages 

There are many existing software packages designed for solving engineering problems. They are 
specialized in one or two problem domains, such as solving linear systems, eigen-vectors, and 
differential equations, etc. Global Arrays provide interfaces to several of  these packages. 

6.3.1 Scalapack 

Scalapack is a well known software library for linear algebra computations on distributed memory 
computers. Global Arrays uses this library to solve systems of linear equations and also to invert 
matrices. 

The function 

   Fortran  integer function ga_solve(g_a, g_b) 
   C        int GA_Solve(int g_a, int g_b) 
   C++      int GA::GlobalArray::solve(const GA::GlobalArray * g_a) 

solves a system of linear equations A * X = B. It first will call the Cholesky factorization routine and, if 
successful, will solve the system with the Cholesky solver. If Cholesky is not able to factorizeA, then it 
will call the LU factorization routine and will solve the system with forward/backward substitution. On 
exit B will contain the solutionX. 

The function 

   Fortran  integer function ga_llt_solve(g_a, g_b) 
   C        int GA_Llt_solve(int g_a, int g_b) 
   C++      int GA::GlobalArray::lltSolve(const GA::GlobalArray * g_a) 

also solves a system of linear equations A * X = B, using the Cholesky factorization of an NxN double 
precision symmetric positive definite matrix A (handle g_a). On successful exit B will contain the 
solution X. 

The function 

   Fortran  subroutinega_lu_solve(trans, g_a, g_b) 
   C        void GA_Lu_solve(char trans, int g_a, int g_b) 
   C++      void GA::GlobalArray::luSolve(char trans, const GA::GlobalArray * g_a) 

solves the system of linear equations op(A)X = B based on the LU factorization. op(A) = A or A' 
depending on the parameter trans.MatrixA is a general real matrix. Matrix B contains possibly 
multiplerhs vectors. The array associated with the handle g_b is overwritten by the solution matrix X. 
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The function 

   Fortran  integer function ga_spd_invert(g_a)  
   C        int GA_Spd_invert(int g_a) 
   C++      int GA::GlobalArray::spdInvert()  

computes the inverse of a double precision matrix using the Cholesky factorization of a NxN double 
precision symmetric positive definite matrix A stored in the global array represented by g_a. On 
successful exit, A will contain the inverse. 

6.3.2 PeIGS 

The PeIGS library contains subroutines for solving standard and generalized real symmetric 
eigensystems. All eigenvalues and eigenvectors can be computed. The library is implemented using a 
message-passing model and is portable across many platforms. For more information and availability 
send a message to gi_fann@pnl.gov. Global Arrays use this library to solve eigen-value problems. 

The function 

   Fortran  subroutine ga_diag(g_a, g_s, g_v, eval) 
   C        void GA_Diag(int g_a, int g_s, int g_v, void *eval) 
   C++      void GA::GlobalArray::diag(const GA::GlobalArray*g_s,  
                           const GA::GlobalArray* g_v, void *eval) 

solves the generalized eigen-value problem returning all eigen-vectors and values in ascending order. 
The input matrices are not overwritten or destroyed. 

The function 

   Fortran  subroutine ga_diag_reuse(control, g_a, g_s, g_v, eval) 
   C        void GA_Diag_reuse(int control, int g_a, int g_s, int g_v,void *eval) 
   C++      void GA::GlobalArray::diagReuse(int control, const GA::GlobalArray* 
g_s,  
                                          const GA::GlobalArray*g_v, void *eval) 

solves the generalized eigen-value problem returning all eigen-vectors and values in ascending order. 
Recommended for REPEATED calls if g_sis unchanged. 

The function 

   Fortran  subroutine ga_diag_std(g_a, g_v, eval) 
   C        void GA_Diag_std(int g_a, int g_v, void *eval) 
   C++      void GA::GlobalArray::diagStd( const GA::GlobalArray* g_v, void *eval) 

solves the standard (non-generalized) eigenvalue problem returning all eigenvectors and values in the 
ascending order. The input matrix is neither overwritten nor destroyed. 

6.3.3 Interoperability with Others 

Global Arrays are interoperable with several other libraries, but do not provide direct interfaces for 
them. For example, one can make calls to and link with  these libraries: 
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PETSc(the Portable, Extensible Toolkit for Scientific Computation) is developed by the Argonne 
National Laboratory. PETSc is a suite of data structures and routines for the scalable (parallel) solution 
of scientific applications modeled by partial differential equations. It employs the MPI standard for all 
message-passing communication, and is written in a data-structure-neutral manner to enable easy reuse 
and flexibility. Here is the instructions for using PETSc with GA. 
  

CUMULVS (Collaborative User Migration User Library for Visualization and Steering) is developed by 
the Oak Ridge National Laboratory. CUMULVS is a software framework that enables programmers to 
incorporate fault-tolerance, interactive visualization and computational steering into existing parallel 
programs.  Here is the instructions for using CUMULVS with GA. 
  

6.4 Synchronization Control in Collective Operations 

GA collective array operations are implemented by exploiting locality information to minimize or even 
completely avoid interprocessor communication or data copying. Before each processor accesses its own 
portion of the GA data we must assure that the data is in a consistent state. That means that there are no 
outstanding communication operations targeting that given global array portion pending while the data 
owner is accessing it. To accomplish that the GA collective array operations have implicit 
synchronization points: at the beginning and at the end of the operation. However, in many cases when 
collective array operations are called back-to-back or if the user does an explicit sync just before a 
collective array operation, some of the internal synchronization points could be merged or even removed 
if user can guarantee that the global array data is in the consistent state. The library offers a call for the 
user to eliminate the redundant synchronization points based on his/her knowledge of the application. 

The function 

  Fortran  subroutine ga_mask_sync(prior_sync_mask,post_sync_mask)  
  C     void GA_Mask_sync(int prior_sync_mask,int post_sync_mask) 
  C++   void GA::GlobalArray::maskSync(int prior_sync_mask, int post_sync_mask) 
 
This operation should be used with a lot of care and only when the application code has been debugged 
 and the user wishes to tune its performance. Making a call to this function with prior_sync_mask 
parameter set to false disables the synchronization done at the beginning of first collective array 
operation called after a call to this function. Similarly, making a call to this function by setting the 
post_sync_mask parameter to false disables the synchronization done at the ending of the first collective 
array operation called after a call to this function.  
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7. Utility Operations 
Global Arrays  include some utility functions to provide process, data locality, information, check the 
memory availability, etc. There are also several handy functions that  print array distribution 
information, or  summarize array usage information. 

7.1 Locality Information 

For a given global array element, or a given patch, sometimes it is necessary to find out who owns this 
element or patch. The function 

   n-DFortran  logical functionnga_locate(g_a, subscript, owner) 
   2-DFortran  logical functionga_locate(g_a, i, j, owner) 
   C        int NGA_Locate(int g_a, int subscript[]) 
   C++      int GA::GlobalArray::locate(int subscript[]) 

tells who (process id)  owns the elements defined by the array subscripts. 

The function 

   n-DFortran  logical functionnga_locate_region(g_a, lo, hi, map,proclist, np) 
   2-DFortran  logical functionga_locate_region(g_a, ilo, ihi, jlo,jhi, map, np) 
   C            int NGA_Locate_region(int g_a, int lo[], int hi[],int *map[], int 
procs[]) 
   C++          int GA::GlobalArray::locateRegion(int lo[], int hi[],int *map[], 
int procs[]) 

returns a list of GA process IDs that 'own' the patch.  

The Global Arrays support an abstraction of a distributed array object. This object is represented by an 
integer handle. A process can access its portion of the data in the global array. To do this, the following 
steps need to be taken: 

1. find the distribution of an array, which part of the data the calling process own  
2. access the data  
3. operate on the date: read/write  
4. release the access to the data  

The function 

   n-DFortran  subroutine nga_distribution(g_a, iproc, lo, hi) 
   2-DFortran  subroutine ga_distribution(g_a, iproc, ilo, ihi, jlo, jhi) 
   C            void NGA_Distribution(int g_a, int iproc, int lo[], int hi[]) 
   C++          void GA::GlobalArray::distribution(int iproc, int lo[], int hi[]) 

finds out the range of the global array g_athat process iproc owns. iproccan be any valid process 
ID.  

The function 

   n-DFortran  subroutine nga_access(g_a, lo, hi, index, ld) 
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   2-DFortran  subroutine ga_access(g_a, ilo, ihi, jlo, jhi, index, ld) 
   C            void NGA_Access(int g_a, int lo[], int hi[], void *ptr, int ld[]) 
   C++          void GA::GlobalArray::access(int lo[], int hi[], void *ptr, int ld
[]) 

provides access to local data in the specified patch of the array owned by the calling process. The C 
interface gives the pointer to the patch. The Fortran interface gives the patch address as the index 
(distance) from the reference address (the appropriate MA base addressing array). 

The function 

   n-DFortran  subroutine nga_release(g_a, lo, hi) 
   2-DFortran  subroutine ga_release(g_a, ilo, ihi, jlo, jhi) 
   C            void NGA_Release(int g_a, lo[], int hi[]) 
   C++          void GA::GlobalArray::release(lo[], int hi[]) 

and 

   n-DFortran  subroutine nga_release_update(g_a, lo, hi) 
   2-DFortran  subroutine ga_release_update(g_a, ilo, ihi, jlo, jhi) 
   C            void NGA_Release_update(int g_a, int lo[], int hi[]) 
   C++          void GA::GlobalArray::releaseUpdate(int lo[], int hi[]) 

releases access to a global array. The former set is used when the data was read only and the latter set is 
used when the data was accessed for writing. 

Global Arrays also provide a function to compare distributions of two arrays. It is 

   Fortran  subroutine ga_compare_distr(g_a, g_b) 
   C        void NGA_Compare_distr(int g_a, int g_b) 
   C++      void GA::GlobalArray::compareDistr(const GA::GlobalArray * g_a) 

 
The only method currently available for accessing the ghost cell data for global arrays that have ghost 
cell data is to use the nga_access_ghosts funtion. This function is similar to the nga_access 
function already described, except that it returns an index (pointer) to the origin of the locally held patch 
of global array data. This local patch includes the ghost cells so the index (pointer) will be pointing to a 
ghost cell. The nga_access_ghosts function also returns the physical dimensions of the local data 
patch, which includes the additional ghost cells, so it is possible to access both the visible data of the 
global array and the ghost cells using this information. The nga_access_ghosts functions have the 
format 

   n-d Fortran  subroutine nga_access_ghosts(g_a, dims, index, ld) 
   C            void NGA_access_ghosts (int g_a, int dims[], void *ptr, int ld[]) 
   C++          void GA::GlobalArray::accessGhosts(int dims[], void *ptr, int ld[]) 

The array dims comes back with the dimensions of the local data patch, including the ghost cells, for 
each dimension of the global array, ptr is an index (pointer) identifying the beginning of the local data 
patch, and ld is any array of leading dimensions fpr the local data patch, which also includes the ghost 
cells. The array ld is actually redundant since the information in ld is also contained in dims, but is 
included to maintain continuity with other GA functions. 
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7.1.1 Process Information 

When developing a program, one  needs to use charateristics of its parallel environment:  process ID, 
how many processes are working together and what their IDs are, and what the topology of processes 
look like. To answer these questions, the following functions can be used. 

The function 

   Fortran  integer function ga_nodeid()  
   C        int GA_Nodeid()  
   C++      int GA::GAServices::nodeid()  

returns the GA process ID of the current process, and the function 

   Fortran  integer function ga_nnodes()  
   C        int GA_Nnodes()  
   C++      int GA::GAServices::nodes()  

tells the number of computing processes. 

The function 

   Fortran  subroutine ga_proc_topology(ga, proc, prow, pcol) 
   C        void NGA_Proc_topology(int g_a, int proc, int coordinates) 
   C++      void GA::GlobalArray::procTopology(int proc, int coordinates) 

determines the coordinates of the specified processor in the virtual processor grid corresponding to the 
distribution of array g_a. 

Example: An global array is distributed on 9 processors. The processors are numbered from 0 to 8 as 
shown in the following figure. If one wants to find out the coordinates of processor 7 in the virtual 
processor grid, by calling the fuction ga_proc_topology, the coordinates of (2,1) will be 
returned.  

 

7.1.2 Cluster Information 

The following functions can be used to obtain information like number of nodes that the program is 
running on, node ID of the process, and other cluster information as discussed below: 
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The function 

   Fortran  integer function ga_cluster_nnodes() 
   C        int GA_Cluster_nnodes() 
   C++      int GA::GAServices::clusterNnodes() 

returns the total number of nodes that the program is running on. On SMP architectures, this will be less 
than or equal to the total number of processors. 

The function 

   Fortran  integer function ga_cluster_nodeid() 
   C        int GA_Cluster_nodeid() 
   C++      int GA::GAServices::clusterNodeid() 

returns the node ID of the process. On SMP architectures with more than one processor per node, 
several processes may return the same node id. 

The function 

   Fortran  integer function ga_cluster_nprocs(inode) 
   C        int GA_Cluster_nprocs(int inode) 
   C++      int GA::GAServices::clusterNprocs(int inode) 

returns the number of processors available on node inode. 

The function 

   Fortran  integer function ga_cluster_procid(inode, iproc) 
   C        int GA_Cluster_procid(int inode, int iproc) 
   C++      int GA::GAServices::clusterProcid(int inode, int iproc) 

returns the processor id associated with node inode and the local processor id iproc. If node inode has N 
processors, then the value of iproc lies between 0 and N-1. 

Example: 2 nodes with 4 processors each. Say, there are 7 processes created. Assume 4 processes on 
node 0 and 3 processes on node 1. In this case: number of nodes=2, node id is either 0 or 1 (for example, 
nodeid of process 2 is 0), number of processes in node 0 is 4 and node 1 is 3. The global rank of each 
process is shown in the figure and also the local rank (rank of the process within the 
node.i.e.cluster_procid) is shown in the paranthesis.  
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7.2 Memory Availability 

Even though the memory management does not have to be performed directly by the user, Global 
Arrays provide functions to verify the memory availability. Global Arrays provide the following 
information: 

1. How much memory has been used by the allocated global arrays.  
2. How much memory is left for allocation of new the global arrays.  
3. Whether the memory in global arrays comes from theMemory Allocator (MA).  
4. Is there any limitation for the memory usage by the Global Arrays.  

The function 

   Fortran  integer function ga_inquire_memory()  
   C        size_t GA_Inquire_memory()  
   C++      size_t GA::GAServices::inquireMemory()  

answers the first question. It returns the amount of memory (in bytes) used in the allocated global arrays 
on the calling processor.  

The function 

   Fortran  integer function ga_memory_avail()  
   C        size_t GA_Memory_avail()  
   C++      size_t GA::GAServices::memoryAvailable()  

answers the second question.  It returns the amount of memory (in bytes) left for allocation of new 
global arrays on the calling processor. 

Memory Allocator(MA) is a library of routines that comprises a dynamic memory allocator for use by 
C, Fortran, or mixed-language applications. Fortran- 77 applications require such a library because the 
language does not support dynamic memory allocation. C (and Fortran-90) applications can benefit from 
using MA instead of the ordinary malloc() and free() routines because of the extra features MA 
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provides. The function 

   Fortran  logical function ga_uses_ma()  
   C        int GA_Uses_ma()  
   C++      int GA::GAServices::usesMA()  

tells whether the memory in Global Arrays comes from the Memory Allocator (MA) or not. 

The function 

   Fortran  logical function ga_memory_limited()  
   C        int GA_Memory_limited()  
   C++      int GA::GAServices::memoryLimited()  

Indicates if a limit is set on memory usage in Global Arrays on the calling processor. 

7.3 Message-Passing Wrappers to Reduce/Broadcast Operations 

Global Arrays provide convenient operations for broadcast/reduce regardless of the message-passing 
library the process is running with. 

The function 

   Fortran  subroutine ga_brdcst(type, buf, lenbuf, root) 
   C        void GA_Brdcst(void *buf, int lenbuf, int root) 
   C++      void GA::GAServices::brdcst(void *buf, int lenbuf, int root) 

broadcasts from process root to all other processes a message buffer of length lenbuf.  

The functions 

   Fortran  subroutine ga_igop(type, x, n, op) 
            subroutine ga_dgop(type, x, n, op) 
   C        void GA_Igop(long x[], int n, char *op) 
            void GA_Dgop(double x[], int n, char *op) 
   C++      void GA::GAServices::igop(long x[], int n, char *op) 
            void GA::GAServices::dgop(double x[], int n, char *op) 

'sum' elements of X(1:N) (a vector present on each process) across all nodes using the communicative 
operator op, The result is broadcasted to all nodes.  Supported operations include 

    +, *, Max, min, Absmax, absmin  

The integer version also includes the bitwise ORoperation. 

These operations unlike ga_sync, do not include embedded ga_genceoperatins. 

7.4 Others 

There are some other useful functions in Global Arrays. One group is about inquiring the array 
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attributes. Another group is about printing the array or part of the array. 

7.4.1 Inquire 

A global array is represented by a handle. Given a handle, one can get the array information, such as the 
array name, memory used, array data type, and array dimension information, with the help of following 
functions. 

The functions 

   n-D Fortran  subroutine nga_inquire(g_a, type, ndim, dims) 
   2-D Fortran  subroutine nga_inquire(g_a, type, dim1, dim2) 
   C            void NGA_Inquire(int g_a, int *type, int *ndim, int dims[]) 
   C++          void GA::GlobalArray::inquire(int *type, int *ndim, int dims[]) 

return the data type of the array, and also the dimensions of the array.  

The function 

   Fortran  subroutine ga_inquire_name(g_a, array_name) 
   C        char* GA_Inquire_name(int g_a) 
   C++      char* GA::GlobalArray::inquireName()  

finds out the name of the array. 

One can also inquire the memory being used with ga_inquire_memory(discussed above). 

7.4.2 Print 

Global arrays provide functions to print 

1. content of the global array  
2. content of a patch of global array  
3. the status of array operations  
4. a summary of allocated arrays  

The function 

   Fortran  subroutine ga_print(g_a)  
   C        void GA_Print(int g_a) 
   C++      void GA::GlobalArray::print()  

prints the entire array to the standard output. The output is formatted.  

A utility function is provided to print data in the patch, which is 

   Fortran  subroutine nga_print_patch(g_a, lo, hi, pretty) 
   C        void NGA_Print_patch(int g_a, int lo[], int hi[], int pretty) 
   C++      void GA::GlobalArray::printPatch(int lo[], int hi[], int pretty) 

One can either specify a formatted output (set prettyto one) where the output is formatted and rows/ 
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columns are labeled, or (setpretty to zero) just dump all the elements of this patch to the standard 
output without any formatting. 

The function 

   Fortran  subroutine ga_print_stats()  
   C        void GA_Print_stats()  
   C++      void GA::GAServices::printStats()  

prints the global statistics information about array operations for the calling process, including 

� number of calls to the GA create/duplicate, destroy, get, put, scatter, gather, and read_and_inc 
operations  

� total amount of data moved in the GA primitive operations  
� amount of data moved in GA primitive operations to logically remote locations  
� maximum memory consumption in global arrays, the "high-water mark"  

The function 

   Fortran  subroutine ga_print_distribution(g_a)  
   C        void GA_Print_distribution(int g_a) 
   C        void GA::GlobalArray::printDistribution()  

prints the global array distribution. It shows mapping array data to the processes. 

The function 

   Fortran  subroutine ga_summarize(verbose)  
   C        void GA_Summarize(int verbose) 
   C++      void GA::GAServices::summarize(int verbose) 

prints info about allocated arrays. verbose can be either one or zero. 

7.4.3 Miscellaneous 

The function 

   Fortran  subroutine ga_check_handle(g_a, string) 
   C        void GA_Check_handle(int g_a, char *string) 
   C++      void GA::GlobalArray::checkHandle(char *string) 

checks if the global array handle g_a represents a valid array. The string is the message to be printed 
when the handle is invalid. 
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GA++: C++ Bindings for Global Arrays 

 

8.1 Overview 

GA++ provides a C++ interface to global arrays (GA) libraries. Here is the doxygen documentation of 
GA++: http://www.emsl.pnl.gov:2080/docs/global/ga++/index.html The GA C++ bindings are a layer 
built directly on top of the GA C bindings. GA++ provides new names for the C bindings of GA 
functions (For example, GA_Add_patch() is renamed as addPatch()).  

8.2 GA++ Classes 

All GA classes (GAServices, GlobalArray) are declared within the scope of GA namespace. 

Namespace issue: Although namespace is part of ANSI C++ standard, not all C++ compilers support 
namespaces (A non-instantiable GA class is provided for implementations using compilers without 
namespace). 
Note: define the variable _GA_USENAMESPACE_ as 0 in ga++.h if your compiler doesnot support 
namespaces.  
   

            namespace GA {  
                        class GAServices;  
                        class GlobalArray;  
            };  

Current implementation has no derived classes (no (virtual) inheritance), templates or exception 
handling. Eventually, more object oriented functionalities will be added, and standard library facilities 
will be used without affecting the performance.  

8.3 Initialization and Termination: 

GA namespace has the following static functions for initialization and termination of Global Arrays. 

GA::Initialize():  
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Initialize Global Arrays, allocates and initializes internal data structures in Global Arrays. This is a 
collective operation.  

GA::Terminate():  
Delete all active arrays and destroy internal data structures. This is a collective operation.  

        namespace GA {  
                   _GA_STATIC_ void Initialize(int argc, char *argv[], size_t limit = 0);  
                   _GA_STATIC_ void Initialize(int argc, char *argv[], unsigned long heapSize, unsigned long 
stackSize, int type, size_t limit = 0);  
                   _GA_STATIC_ void Terminate();  
        };  

Example:  
  #include <iostream.h>  
  #include "ga++.h"  

  int  
  main(int argc, char **argv) {  
            GA::Initialize(argc, argv, 0);  
            cout << "Hello World\n";  
            GA::Terminate();  
  }  

8.4 GAServices: 

    GAServices class has member functions that does all the global operations (non-array operations) like 
Process Information (number of processes, process id, ..), Inter-process Synchronization (sync, lock, 
broadcast, reduce,..), etc,. 

SERVICES Object:  
    GA namespace has a global "SERVICES" object (of type "GAServices"), which can be used to 
invoke the non-array operations. To call the functions (for example, sync()), we invoke them on this 
SERVICES object (for example, GA::SERVICES.sync()). As this object is in the global address space, 
the functions can be invoked from anywhere inside the program (provided the ga++.h is included in that 
file/program).  

8.5 Global Array: 

GlobalArray class has member functions that perform: 

�     Array operations  
�     One-sided (get/put),  
�     Collective array operations,  
�     Utility operations, etc,.  
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Mirrored Arrays 
9.1 Overview 

Mirrored arrays use a hybrid approach to replicate data across cluster nodes and distribute data within 
each node. It uses shared memory for caching latency sensitive distributed data structures on Symmetric 
Multi-Processor nodes of clusters connected with commodity networks. The user is responsible for 
managing consistency of the data cached within the mirrored arrays. Instead of applying mirroring to all 
distributed arrays, the user can decide, depending on the nature of the algorithm and the communication 
requirements (number and size of messages), which arrays can or should use mirroring and which 
should be left fully distributed and accessed without the shared memory cache.  

  
 

Figure: Example of a 2-dimensional array fully distributed, SMP mirrored, and replicated on two 4-way 
SMP cluster nodes. 

This hybrid approach is particularly useful for problems where it is important to solve a moderate sized 
problem many times, such as an ab initio molecular dynamics simulation of a moderate size molecule. A 
single calculation of the energy and forces that can be run in a few minutes may be suitable for a 
geometry optimization, where a few tens of calculations are required, but is still too long for a molecular 
dynamics trajectory, which can require tens of thousands of separate evaluations. For these problems, it 
is still important to push scalability to the point where single energy and force calculations can be 
performed on the order of seconds. Similar concerns exist for problems involving Monte Carlo sampling 
or sensitivity analysis where it is important to run calculations quickly so that many samples can be 
taken. 

Mirrored arrays differ from traditional replicated data schemes in two ways. First, mirrored arrays can 
be used in conjunction with distributed data and there are simple operations that support conversion 
back and forth from mirrored to distributed arrays. This allows developers maximum flexibility in 
incorporating mirrored arrays into their algorithms. Second, mirrored arrays are distributed within an 
SMP node (see the above figure). For systems with a large number of processors per node, e.g., 32 in the 
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current generation IBM SP, this can result in significant distribution of the data. Even for systems with 
only 2 nodes per processor, this will result in an immediate savings of 50% over a conventional 
replicated data scheme. 

The disadvantage of using mirrored arrays is that problems are limited in size by what can fit onto a 
single SMP node. This can be partially offset by the fact that almost all array operations can be 
supported on both mirrored and distributed arrays, so that it is easy to develop code that can switch 
between using mirrored arrays and conventional distributed arrays, depending on problem size and the 
number of available processors. 

9.2 Mirrored Array Operations 

   Fortran  integer ga_mirror_config() 
   C        int GA_Mirror_config() 
   C++      int GA::GAServices::mirrorConfig() 

This function returns a handle to the mirrored processor list, which can then be used to create a mirrored 
global array using one of the NGA_Create_*_config calls. 

 
   Fortran  integer ga_merge_mirrored(g_a) 
   C        int GA_Merge_mirrored(int g_a) 
   C++      int GA::GlobalArray::mergeMirrored() 

This subroutine merges mirrored arrays by adding the contents of each array across nodes. The result is 
that the each mirrored copy of the array represented by g_a is the sum of the individual arrays before the 
merge operation. After the merge, all mirrored arrays are equal. This is a collective operation.  

 
   Fortran  integer nga_merge_distr_patch(g_a, alo, ahi, g_b, blo, bhi) 
   C        int NGA_Merge_distr_patch(int g_a, int alo[], int ahi[], int g_b, int 
blo[], int bhi[]) 
   C++      int GA::GlobalArray::mergeDistrPatch(int alo[], int ahi[], int g_b, int 
blo[], int bhi[]) 

This function merges all copies of a patch of a mirrored array (g_a) into a patch in a distributed array 
(g_b). This is same as GA_merge_mirrored, except, this function is operated on a patch rather than the 
whole array. This is a collective operation.  

 
   Fortran  integer ga_is_mirrored(g_a) 
   C        int GA_Is_mirrored(int g_a) 
   C++      int GA::GlobalArray::isMirrored() 

This subroutine checks if the array is mirrored array or not. Returns 1 if it is a mirrored array, else 
returns 0. This is a local operation.  
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