
The Global Arrays User's Manual

(Pacific Northwest National Laboratory Technical Report Number PNNL-13130)

Jarek Nieplocha, Jialin Ju, Manoj Kumar Krishnan, Bruce Palmer, Vinod Tipparaju

This document is inteded to be used with the version 3.3-Beta of Global Arrays

October 1, 2002

DISCLAIMER
This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, MAKES
ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR
THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
SOFTWARE, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY
OWNED RIGHTS.
ACKNOWLEDGMENT
This software and its documentation were produced with United States Government support under Contract Number DE-
AC06-76RLO-1830 awarded by the United States Department of Energy. The United States Government retains a paid-up
non-exclusive, irrevocable worldwide license to reproduce, prepare derivative works, perform publicly and display publicly
by or for the US Government, including the right to distribute to other US Government contractors.

Contents
1. Introduction
 1.1 Overview
 1.2 Basic Functionality
 1.3 Programming Model
 1.4 Application Guidelines

2. Writing, Building and Running GA Programs
 2.1 Platform and Library Dependencies
 2.1.1 Supported Platforms
 2.1.2 Selection of the Communication Network for ARMCI
 2.1.3 Selection of the Message passing Library
 2.1.4 Dependencies on Other Software
 2.2 Writing GA Programs
 2.3 Building GA Programs
 2.3.1 Unix Environment
 2.3.2 Windows Environment
 2.3.3 Writing and building new GA programs
 2.4 Running GA Programs

3. Initialization and Termination of GA Programs
 3.1 Message Passing
 3.2 Memory Allocation
 3.2.1 How to determine what the values of MA stack and heap size should be?

10/21/2003http://www.emsl.pnl.gov/docs/global/user.html

 3.3 GA initialization
 3.3.1 Limiting Memory Usage by Global Arrays
 3.4 Termination
 3.5 Creating Arrays
 3.5.1 Creating Arrays with Ghost Cells
 3.6 Destroying Array

4. One-sided Operations
 4.1 Put/Get
 4.2 Acc/Read_inc
 4.3 Scatter/Gather
 4.4 Periodic Interfaces
 4.5 Non-blocking operations (put/get/acc)

5. Interprocess Synchronization
 5.1 Lock and Mutex
 5.2 Fence
 5.3 Sync

6. Collective Array operations
 6.1 Basic Array Operations
 6.1.1 Whole Arrays
 6.1.2 Patches
 6.2 Linear Algebra
 6.2.1 Whole Arrays
 6.2.2 Patches
 6.2.3 Element-wise operations
 6.3 Interfaces to Third Party Software Packages
 6.3.1 Scalapack
 6.3.2 PeIGS
 6.3.3 Interoperability with Others
 6.4 Synchronization Control in Collective Operations

7. Utility Operations
 7.1 Locality Information
 7.1.1 Process Information
 7.1.2 Cluster Information
 7.2 Memory Availability
 7.3 Message-Passing Wrappers to Reduce/Broadcast Operations
 7.4 Others
 7.4.1 Inquire
 7.4.2 Print
 7.4.3 Miscellaneous

8. GA++: C++ Bindings for Global Arrays
 8.1 Overview
 8.2 GA++ Classes
 8.3 Initialization and Termination
 8.4 GAservices
 8.5 GlobalArray

10/21/2003http://www.emsl.pnl.gov/docs/global/user.html

9. Mirrored Arrays
 9.1 Model Overview
 9.2 Mirrored Array Operations

Appendix
 A. List of C functions
 B. List of Fortran functions

10/21/2003http://www.emsl.pnl.gov/docs/global/user.html

1. Introduction
1.1 Overview

The Global Arrays (GA) toolkit provides a shared memory style programming environment in the
context of distributed array data structures (called "global arrays"). From the user perspective, a global
array can be used as if it was stored in shared memory. All details of the data distribution, addressing,
and data access are encapsulated in the global array objects. Information about the actual data
distribution and locality can be easily obtained and taken advantage of whenever data locality is
important. The primary target architectures for which GA was developed are massively-parallel
distributed-memory and scalable shared-memory systems.

GA divides logically shared data structures into "local" and "remote" portions. It recognizes variable
data transfer costs required to access the data depending on the proximity attributes. A local portion of
the shared memory is assumed to be faster to access and the remainder (remote portion) is considered
slower to access. These differences do not hinder the ease-of-use since the library provides uniform
access mechanisms for all the shared data regardless where the referenced data is located. In addition,
any processes can access a local portion of the shared data directly/in-place like any other data in
process local memory. Access to other portions of the shared data must be done through the GA library
calls.

GA was designed to complement rather than substitute the message-passing model, and it allows the
user to combine shared-memory and message-passing styles of programming in the same program. GA
inherits an execution environment from a message-passing library (w.r.t. processes, file descriptors etc.)
that started the parallel program.

GA is implemented as a library with C and Fortran-77 bindings, and there have been also a Python and
C++ interfaces (included starting with the release 3.2) developed. Therefore, explicit library calls are
required to use the GA model in a parallel C/Fortran program.

A disk extension of the Global Array library is supported by its companion library called Disk Resident
Arrays (DRA). DRA maintains array objects in secondary storage and allows transfer of data to/from
global arrays.

1.2 Basic Functionality

The basic shared memory operations supported include get, put, scatter and gather. They are
complemented by atomic read-and-increment, accumulate (reduction operation that combines data in
local memory with data in the shared memory location), and lock operations. However, these operations
can only be used to access data in global arrays rather than arbitrary memory locations. At least one
global array has to be created before data transfer operations can be used. These GA operations are truly
one-sided/unilateral and will complete regardless of actions taken by the remote process(es) that own(s)
the referenced data. In particular, GA does not offer or rely on a polling operation or require inserting
any other GA library calls to assure communication progress on the remote side.

A programmer in the GA program has a full control over the distribution of global arrays. Both regular
and irregular distributions are supported, see Section 3 for details.

The GA data transfer operations use an array index-based interface rather than addresses of the shared

10/21/2003http://www.emsl.pnl.gov/docs/global/um/intro.html

data. Unlike other systems based on global address space that support remote memory (put/get)
operations, GA does not require the user to specify the target process/es where the referenced shared
data resides -- it simply provides a global view of the data structures. The higher level array oriented
API (application programming interface) makes GA easier to use, at the same time without
compromising data locality control. The library internally performs global array index-to-address
translation and then transfers data between appropriate processes. If necessary, the programmer is
always able to inquire:

� where and an element or array section is located, and
� which process or processes own data in the specified array section.

The GA toolkit supports four data types in Fortran: integer, real, double precision, and double complex.
In the C interface, int, long, float, double and struct double complex are available. Underneath, the
library represents the data using C datatypes. For the Fortran users, it means that some arrays created in
C for which there is no appropriate datatype mapping to Fortran (for example on the Cray T3E Fortran
real is not implemented whereas C float is) might not be accessible. In all the other cases, the dataype
representation is transparent.

The supported array dimensions range from one to seven. This limit follows the Fortran convention. The
library can be reconfigured to support more than 7-dimensions but only through the C interface.

1.3 Programming Model

The Global Arrays library supports two programming styles: task-parallel and data-parallel. The GA
task-parallel model of computations is based on the explicit remote memory copy: The remote portion of
shared data has to be copied into the local memory area of a process before it can be used in
computations by that process. Of course, the "local" portion of shared data can always be accessed
directly thus avoiding the memory copy.

The data distribution and locality control are provided to the programmer. The data locality information
for the shared data is also available. The library offers a set of operations for management of its data

10/21/2003http://www.emsl.pnl.gov/docs/global/um/intro.html

structures, one-sided data transfer operations, and supportive operations for data locality control and
queries. The GA shared memory consistency model is a result of a compromise between the ease of use
and a portable performance. The load and store operations are guaranteed to be ordered with respect to
each other only if they target overlapping memory locations. The store operations (put, scatter) and
accumulate complete locally before returning i.e., the data in the user local buffer has been copied out
but not necessarily completed at the remote side. The memory consistency is only guaranteed for:

� multiple read operations (as the data does not change),
� multiple accumulate operations (as addition is commutative), and
� multiple disjoint put operations (as there is only one writer for each element).

The application can manage consistency of its data structures in other cases by using lock, barrier, and
fence operations available in the library.

The data-parallel model is supported by a set of collective functions that operate on global arrays or their
portions. Underneath, if any interprocessor communication is required, the library uses remote memory
copy (most often) or collective message-passing operations.

1.4 Application Guidelines

These are some guidelines regarding suitability of the GA for different types of applications.

When to use GA:

Algorithmic Considerations

� applications with dynamic and irregular communication patterns
� for calculations driven by dynamic load balancing
� need 1-sided access to shared data structures
� need high-level operations on distributed arrays and/or for out-of-core

array-based algorithms (GA + DRA)

Usability Considerations

� data locality must be explicitly available
� when coding in message passing becomes too complicated
� when portable performance is important
� need object orientation without the overhead of C++

When not to use GA:

Algorithmic Considerations

� for systolic, or nearest neighbor communications with regular communication patters
� when synchronization associated with cooperative point-to-point message passing is

needed (e.g., Cholesky factorization in Scalapack)

Usability Considerations

� when interprocedural analysis and compiler parallelization is more effective

10/21/2003http://www.emsl.pnl.gov/docs/global/um/intro.html

� a parallel language support is sufficient and robust compilers available

10/21/2003http://www.emsl.pnl.gov/docs/global/um/intro.html

2. Writing, Building and Running GA Programs
The web pagewww.emsl.pnl.gov:2080/docs/global/support.html contains updated information
about using GA on different platforms. Please refer to this page frequently for most recent updates and
platform information.

2.1 Platform and Library Dependencies

2.1.1 Supported Platforms

� IBM SP, CRAY T3E/J90/SV1, SGI Origin, Fujitsu VX/VPP, Hitachi
� Cluster of workstations: Solaris, IRIX, AIX, HPUX, Digital/Tru64 Unix, Linux, NT
� Standalone uni- or multi-processor workstations or servers
� Standalone uni- or multi-processor Windows NT workstations or servers

Older versions of GA supported some additional (now obsolete) platforms such as: IPSC, KSR,
PARAGON, DELTA, CONVEX. They are not supported in the newer (>3.1) versions because we do
not have access to these systems. We recommend using GA 2.4 on these platforms.

For most of the platforms, there are two versions available: 32-bit and 64-bit.

Platform 32-bit
TARGET name

64-bit TARGET
name Remarks

Sun ultra SOLARIS SOLARIS64 64-bit version added in GA 3.1
IBM RS/6000 IBM IBM64 64-bit version added in GA 3.1

IBM SP LAPI not available
no support yet for user-space
communication in the 64-bit mode by
IBM

Compaq/DEC
alpha not available DECOSF

HP pa-risc HPUX HPUX64 64-bit version added in GA 3.1
Linux x86, ultra,
powerpc LINUX not available

Linux IA64
(Itanium) not available LINUX64

Linux alpha not available LINUX64
64-bit version added in GA 3.1;
Compaq compilers rather than GNU
required

Cray T3E not available CRAY-T3E
Cray J90 not available CRAY-YMP
Cray SV1 not available CRAY-SV1
SGI IRIX mips SGI_N32, SGI SGITFP
Hitachi SR8000 HITACHI not available

Fujitsu VPP FUJITSU-VPP FUJITSU-VPP64 64-bit version added in GA 3.1

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

To aid development of fully portable applications, in 64-bit mode Fortran integer datatype is 64-bits. It
is motivated by 1) the need of applications to use very large data structures and 2) Fortran INTEGER*8
not being fully portable. The 64-bit representation of integer datatype is accomplished by using
appropriate Fortran compiler flag.

Because of limited interest in heterogenous computing among known us GA users, the Global Array
library still does not support heterogeonous platforms. This capability can be added if required by new
applications.

2.1.2 Selection of the communication network for ARMCI

Some cluster installations can be equipped with a high performance network which offer instead, or in
addition to TCP/IP some special communication protocol, for example GM on Myrinet network. To
achieve high performance in Global Arrays, ARMCI must be built to use these protocols in its
implementation of one-sided communication. Starting with GA 3.1, this is accomplished by setting an
environment variable ARMCI_NETWORK to specify the protocol to be used. In addition, the it might
be necessary to provide location for the header files and library path corresponding to location of s/w
supporting the appropriate protocol API, see g/armci/config/makecoms.h for details.

The port on top of Myrinet has been partially optimized. The Giganet/VIA port has not been optimized
yet and is included on the experimental basis.

2.1.3 Selection of the message-passing library

As explained in Section 3, GA works with either MPI or TCGMSG message-passing libraries. That
means that GA applications can use either of these interfaces. Selection of the message-passing library
takes place when GA is built. Since the TCGMSG library is small and compiles fast, it is included with
the GA distribution package and built on Unix workstations by default so that the package can be built
as fast and as convenientlly to the user as possible. There are three possible configurations for running
GA with the message-passing libraries:

1. with TCGMSG
2. with MPI and TCGMSG emulation library: TCGMSG-MPI, that implements functionality of

TCGMSG using MPI. In this mode, the message passing library is initialized using a TCGMSG
PBEGIN(F) call which internally references MPI_Initialize. To enable this mode, define the
environmental variable USE_MPI.

3. directly with MPI. In this mode, GA program should contain MPI initialization calls instead of
PBEGIN(F).

systems

Network Protocol name ARMCI_NETWORK setting Supported platforms
Ethernet TCP/IP SOCKETS (optional/default) workstation clusters
Quadrics Elan/Shmem QUADRICS Linux (alpha,x86,IA64), Compaq
Myrinet GM GM Linux (x86,ultra,IA64)
Giganet cLAN VIA VIA Linux (x86)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

For the MPI versions, the optional environmental variables MPI_LIB and MPI_INCLUDE are used to
point to the location of the MPI library and include directories if they are not in the standard system
location(s). GA programs are started with the mechanism that any other MPI programs use on the given
platform.

The recent versions of MPICH (an MPI implementation from ANL/Mississippi State) keep the MPI
header files in more than one directory and provide compiler wrappers that implicitly point to the
appropriate header files. One can :

� use MPI_INCLUDE by expanding the string with another directory component prefixed with "-
I" (you are passing include directory names as a part of compiler flags), or (starting with GA 3.1)
separated by comma "," and withot the prefix, OR

� use MPI aware compiler wrappers e.g., mpicc and mpif77 to build GA right out of the box on
UNIX workstations:

make FC=mpif77 CC=mpicc

One disadvantage of the second approach it that GA makefile in some circumstances might be not able
to determine which compiler (e.g., GNU or PGI) is called underneath by the MPICH compiler wrappers.
Since different compilers provide different Fortran/C interface, the package might fail to build. This
problem is most likely to occur on non-Linux Unix systems with non-native compilers (e.g., gcc).

On Windows NT, the current version of GA was tested with WMPI, an NT implementation derived
from MPICH in Portugal.

2.1.3 Dependencies on other software

In addition to the message-passing library, GA requires:

� MA (Memory Allocator), a library for managment of local memory;
� ARMCI, a one-sided communication library that GA uses as its run-time system;
� BLAS library is required for the eigensolver and ga_dgemm;
� LAPACK library is required for the eigensolver (a subset is included with GA, which is built into

liblinalg.a);

GA may also depend on other software depending on the functions being used.

� GA eigensolver, ga_diag, is a wrapper for the eigensolver from the PEIGS library; (Please contact
George Fann <gi_fann@pnl.gov> about PEIGS)

� SCALAPACK, PBBLAS, and BLACS libraries are required for ga_lu_solve, ga_cholesky,
ga_llt_solve, ga_spd_invert, ga_solve. If these libraries are not installed, the named operations
will not be available.

� If one would like to generate trace information for GA calls, an additional library libtrace.a is
required, and the -DGA_TRACE define flag should be specified for C and Fortran compilers.

2.2 Writing GA Programs

C programs that use Global Arrays should include files `global.h', 'ga.h', `macdecls.h'. Fortran
programs should include the files `mafdecls.fh', `global.fh'. Fortran source must be preprocessed as a
part of compilation.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

The GA program should look like:

� When GA runs with MPI

 Fortran C

 call mpi_init(..) MPI_Init(..) ! start MPI
 call ga_initialize() GA_Initialize() ! start global arrays
 status = ma_init(..) MA_Init(..) ! start memory allocator

 do work do work

 call ga_terminate() GA_Terminate() ! tidy up global arrays
 call mpi_finalize() MPI_Finalize() ! tidy up MPI
 stop ! exit program

� When GA runs with TCGMSG or TCGMSG-MPI

 Fortran C

 call pbeginf() PBEGIN_(..) ! start TCGMSG
 call ga_initialize() GA_Initialize() ! start global arrays
 status = ma_init(..) MA_Init(..) ! start memory allocator

 do work do work

 call ga_terminate() GA_Terminate() ! tidy up global arrays
 call pend() PEND_() ! tidy up tcgmsg
 stop ! exit program

The ma_init call looks like :

 status = ma_init(type, stack_size, heap_size)

and it basically just goes to the OS and gets stack_size+heap_size elements of size type. The amount of
memory MA allocates need to be sufficient for storing global arrays on some platforms. Please refer to

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

section 3.3.1 for the details and information on more advanced usage of MA in GA programs.

2.3 Building GA Programs

Use GNU make to build the GA library and application programs on Unix and Microsoft nmake on
Windows. The structure of the available makefiles are

� GNUmakefile: Unix makefile
� MakeFile: Windows NT makefile
� Makefile.h: definitions & include symbols

The user needs to specify TARGET in the GNUmakefile or on the command line when calling make.
The library and test programs should be built by calling make in the current directory. Valid TARGETs
are listed by by calling make in the top level distribution directory on UNIX family of systems when
TARGET is not defined. On Windows, WIN32, CYGNUS and INTERIX (previously known as
OpenNT) are supported.

One could affect which compilers and compiler flags the package uses (instead of the predefined
defaults) by specifying them for GNU make on the command line;

� CC - name of the C compiler (e.g., gcc, cc, or ccc)
� FC - name of the Fortran compiler (e.g., g77, f90, mpif77 or fort)
� COPT - optimization or debug flags for the C compiler (e.g., -g, -O3)
� FOPT - optimization or debug flags for the Fortran compiler (e.g., -g, -O1)

For example,

gmake FC=f90 CC=ccc FOPT=-O4 COPT=-g

Note that GA provides only Fortran-77 interfaces. To use and compile with a Fortran 90 compiler, it has
to support a subset of Fortran-77.

2.3.1 Unix Environment

To build GA with the MPI, user needs to define environmental variables USE_MPI, MPI_LIB and
MPI_INCLUDE which should point to the location of the MPI library and include directories.

 Example: using csh/tcsh (assume using MPICH installed in /usr/local on IBM workstation)

 setenv USE_MPI y
 setenv MPI_LOC /usr/local/mpich
 setenv MPI_LIB $MPI_LOC/lib/rs6000/ch_shmem
 setenv MPI_INCLUDE $MPI_LOC/include

Additionally, if the TCGMSG-MPI library is not needed, the make/environmental variable
MSG_COMMS should be defined as MSG_COMMS = MPI.

Interface routines to ScaLAPACK are only available with MPI, and of course with ScaLAPACK. The
user is required to define the environment variables USE_SCALAPACK, and the location of
ScaLAPACK & Co. libraries in variable SCALAPACK.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

 Example: using csh/tcsh

 setenv USE_SCALAPACK y
 setenv SCALAPACK '-L/msrc/proj/scalapack/LIB/rs6000
 -lscalapack -lpblas -ltools -lblacsF77cinit -lblacs'
 setenv USE_MPI y

Since there are certain interdependencies between blacs and blacsF77cinit, some system might require
specification of -lblacs twice to fix the unresolved external symbols from these libs.

To build the library, type
 make or gmake

To build an application based on GA located in g/global/testing, for example, the application's name
is app.c (or app.F, app.f), type
 make app.x or gmake app.x

Please refer to compiler flags in file g/global/Makefile.h to make sure that Fortran and C
compiler flags are consistent with flags use to compile your application. This may be critical when
Fortran compiler flags are used to change the default length of the integer datatype.

2.3.2 Windows NT

To buid GA on Windows NT, MS Power Fortran 4 or DEC Visual Fortran 5 or later, and MS Visual C 4
or later are needed. Other compilers might need the default compilation flags modified. When
commercial Windows compilers are not available, one can choose to use CYGNUS or INTERIX and
build it as any other Unix box using GNU compilers.

First of all, one needs to set environment variables (same as in Unix enviroment). GA needs to know
where find the MPI include files and libraries. To do this, select the Environment tab under the Control
Panel, then set the variables to point to the location of MPI, for example for WMPI on disk D:

set MPI_INCLUDE as d:\Wmpi\Include
set MPI_LIB as d:\Wmpi\Console

Make sure that the dynamic link libraries required by the particular implementation of MPI are copied to
the appropriate location for the system DLLs. For WMPI, copy VWMPI.dll to \winnt.

In the top directory do,

nmake

The GA test.exe program can be built in the g\global\testing directory:

nmake test.exe

In addition, the HPVM package from UCSD offers the GA interface in the NT/Myrinet cluster
environment.

GA could be built on Windows 95/98. However, due to the DOS shell limitations, the top level

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

NTmakefile will not work. Therefore, each library has to be made separately in its own directory. The
environment variables referring to MPI can be hardcoded in the NT makefiles.

2.3.3 Writing and building new GA programs

For small programs contained in a single file, the most convenient approach is to put your program file
into the g/global/testing directory. The existing GNU make suffix rules would build an executable
with the ".x" suffix from any C or Fortran source file. You do not have to modify makefiles in
g/global/testing at all. For example, if your program is contained in myfile.c or myfile.F and you
place it in that directory, all you need to do to create an executable called myfile.x is to type: make
myfile.x .

Windows nmake is not as powerful as GNU make - you would need to modify the NT makefile.

This approach obviously is not feasible for large packages that contain multiple source files and
directories. In that case you need to provide apropriate definitions in your makefile:

� to header files located in the include directory, g/include, where all public header files are
copied in the process of building GA

� add references to libglobal.a (Unix) global.lib (Windows) and libma.a (Unix) ma.lib
(Windows) in g/lib/$(TARGET) and for the message-passing libraries

� follow compilation flags for the GA test programs in GNU and Windows makefiles
g/config/makefile.h. The recommended approach is to include g/config/makefile.h in your
makefile.

Starting with GA 3.1, one could simplify linking of applications by including
g/armci/config/makecoms.h and g/armci/config/makemp.h that define all the necessary platform
specific libraries that are required by GA.

2.4 Running GA Programs

Assume the app.x had already been built. To run it,

1. On MPPs, such as Cray T3E, or IMB SP
Use appropriate system command to specify the number of processors, load and run the programs.

Example: to run on four processors on the Cray T3E, use

 mpprun -n 4 app.x

2. On shared memory systems and (network of) workstations (including linux cluster)
If the app.x is built based on MPI, run the program the same way as any other MPI programs.

Example: to run on four processes on SGI workstation, use

 mpirun -np 4 app.x, or
 app.x -np 4

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

If app.x is built based on TCGMSG(not including, Fujitsu, Cray J90, and Windows, because there
are no native ports of TCGMSG), to execute the program on Unix workstations/servers, one
should use the 'parallel' program (built in tcgmsg/ipcv4.0). After building the application, a
file called 'app.x.p' would also be generated (If there is not such a file, make it: make
app.x.p). This file can be edited to specify how many processors and tasks to use, and how to
load the executables. Make sure that 'parallel' is accessible (you might copy it into your 'bin'
directory). To execute, type:

 parallel app.x

3. On Microsoft NT, there is no support for TCGMSG, which means you can only build your
application based on MPI. Run the application program the same way as any other MPI programs.
For, WMPI you need to create the .pg file.

Example:

 R:\nt\g\global\testing> start /b test.exe

10/21/2003http://www.emsl.pnl.gov/docs/global/um/build.html

3. Initialization and Termination
For historical reasons (the 2-dimensional interface was developed first), many operations have two
interfaces, one for two dimensional arrays and the other for arbitrary dimensional (one- to seven-
dimensional, to be more accurate) arrays. The latter can definitely handle two dimensional arrays as
well. The supported data types are integer,double precision, and double complex. Global Arrays provide
C and Fortran interfaces in the same (mixed-language) program to the same array objects. The
underlying data layout is based on the Fortran convention.

GA programs require message-passing and Memory Allocator (MA) libraries to work. Global Arrays is
an extension to the message-passing interface. GA internally does not allocate local memory from the
operating system - all dynamically allocated local memory comes from MA. We will describe the details
of memory allocation later in this section.

3.1 Message Passing

The first version of Global Arrays was released in 1994 before robust MPI implementations became
available. At that time, GA worked only with TCGMSG, a message-passing library that one of the GA
authors (Robert Harrison) had developed before. In 1995, support for MPI was added. At the present
time, the GA distribution still includes the TCGMSG library for backward compatibility purposes, and
because it is small, fast to comple, and provides a minimal message-passing support required by GA
programs. The user can enable the MPI-compatible version of GA by defining USE_MPI environment
variable before compiling the GA toolkit. On systems where vendors provide MPI with interoperable C
and Fortran interfaces, there is no advantage in compiling or using TCGMSG.

The GA toolkit needs the following functionality from any message-passing library it runs with:

� initialization and termination of processes in an SPMD (single-program-multiple-data) program,
� synchronization,
� functions that return number of processes and calling process id,
� broadcast,
� reduction operation for integer and double datatypes, and
� a function to abort the running parallel job in case of an error.

The message-passing library has to be initialized before the GA library and terminated after the GA
library is terminated.

GA provides two functions ga_nnodesand ga_nodeidthat return the number of processes and the
calling process id in a parallel program. Starting with release 3.0, these functions return the same values
as their message-passing counterparts. In earlier releases of GA on clusters of workstations, the mapping
between GA and message-passing process ids were nontrivial. In these cases, the
ga_list_nodeidfunction (now obsolete) was used to describe the actual mapping.

Although message-passing libraries offer their own barrier (global synchronization) function, this
operation does not wait for completion of the outstanding GA communication operations. The GA
toolkit offers a ga_syncoperation that can be used for synchronization, and it has the desired effect of
waiting for all the outstanding GA operations to complete.

3.2 Memory Allocation

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

GA uses a very limited amount of statically allocated memory to maintain its data structures and state.
Most of the memory is allocated dynamically as needed, primarily to store data in newly allocated
global arrays or as temporary buffers internally used in some operations, and deallocated when the
operation completes.

There are two flavors of dynamically allocated memory in GA: shared memory and local memory.
Shared memory is a special type of memory allocated from the operating system (UNIX and Windows)
that can be shared between different user processes (MPI tasks). A process that attaches to a shared
memory segment can access it as if it was local memory. All the data in shared memory is directly
visible to every process that attaches to that segment. On shared memory systems and clusters of SMP
(symmetritc multiprocessor) nodes, shared memory is used to store global array data and is allocated by
the Global Arrays run-time system called ARMCI. ARMCI uses shared memory to optimize
performance and avoid explicit interprocessor communication within a single shared memory system or
an SMP node. ARMCI allocates shared memory from the operating system in large segments and then
manages memory in each segment in response to the GA allocation and deallocation calls. Each segment
can hold data in many small global arrays. ARMCI does not return shared memory segments to the
operating system until the program terminates (calls ga_terminate).

On systems that do not offer shared-memory capabilities or when a program is executed in a serial
mode, GA uses local memory to store data in global arrays.

All of the dynamically allocated local memory in GA comes from its companion library, the Memory
Allocator (MA) library. MA allocates and manages local memory using stack and heap disciplines. Any
buffer allocated and deallocated by a GA operation that needs temporary buffer space comes from the
MA stack. Memory to store data in global arrays comes fromheap. MA has additional features useful for
program debugging such as:

� left and right guards: they are stamps that detect if a memory segment was overwritten by the
application,

� named memory segments, and
� memory usage statistics for the entire program.

Explicit use of MA by the application to manage its non-GA local data structures is not necessary but
encouraged. Because MA is used implicitly by GA, it has to be initialized before the first global array is
allocated. The MA_init function requires users to specify memory for heap and stack. This is because
MA:

� allocates from the operating system only one segment equal in size to the sum of heap and stack,
� manages both allocation schemes using memory coming from opposite ends of the same segment,

and
� the boundary between free stack and heap memory is dynamic.

It is not important what the stack and heap size argument values are as long as the aggregate memory
consumption by a program does not exceed their sum at any given time.

3.2.1 How to determine what the values of MA stack and heap size should be?

The answer to this question depends on the run-time environment of the program including the
availability of shared memory. A part of GA initialization involves initialization of the ARMCI run-time
library. ARMCI dynamically determines if the program can use shared memory based on the

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

architecture type and current configuration of the SMP cluster. For example, on uniprocessor nodes of
the IBM SP shared memory is not used whereas on the SP with SMP nodes it is. This decision is made
at run-time. GA reports the information about the type of memory used with the function ga_uses_ma
(). This function returns false when shared memory is used and true when MA is used.

Based on this information, a programmer who cares about the efficient usage of memory has to consider
the amount of memory per single process (MPI task) needed to store data in global arrays to set the
heap size argument value in ma_init. The amount of stack space depends on the GA operations used
by the program (for example ga_mulmat_patch orga_dgemmneed several MB of buffer space to
deliver good performance) but it probably should not be less than 4MB. The stack space is only used
when a GA operaion is executing and it is returned to MA when it completes.

3.3 GA Initialization

The GA library is initialized after a message-passing library and before MA. It is possible to initialize
GA after MA but it is not recommended: GA must first be initialized to determine if it needs shared or
MA memory for storing distributed array data. There are two alternative functions to initialize GA:

 Fortran subroutine ga_initialize()
 C void GA_Initialize()
 C++ void GA::Initialize(int argc, char **argv)

and

 Fortran subroutine ga_initialize_ltd(limit)
 C void GA_Initialize_ltd(size_t limit)
 C++ void GA::Initialize(int argc, char **argv, size_t limit)

The first interface allows GA to consume as much memory as the application needs to allocate new
arrays. The latter call allows the programmer to establish and enforce a limit within GA on the memory
usage.

Note: In GA++, there is an additional functionality as follows:
 C++ void GA::Initialize(int argc, char *argv[], unsigned long heapSize,
unsigned long stackSize, int type, size_t limit=0)

3.3.1 Limiting Memory Usage by Global Arrays

GA offers an optional mechanism that allows a programmer to limit the aggregate memory consumption
used by GA for storing Global Array data. These limits apply regardless of the type of memory used for
storing global array data.They do not apply to temporary buffer space GA might need to use to execute
any particular operation. The limits are given per process (MPI task) in bytes. If the limit is set, GA
would not allocate more memory in global arrays that would exceed the specified value - any calls to
allocate new arrays that would simply fail (return false). There are two ways to set the limit:

1. at initialization time by calling ga_initialize_ltd, or
2. after initialization by calling the function

 Fortran subroutine ga_set_memory_limit(limit)
 C void GA_Set_memory_limit(size_t limit)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

 C++ void GA::GAServices::setMemoryLimit(size_t limit)

It is encouraged that the user choose the first option, even though the user can intialize the GA normally
and set the memory limit later.

Example: Initialization of MA and setting GA memory limits

call ga_initialize()
if (ga_uses_ma()) then

 status = ma_init(MT_DBL, stack, heap+global)
 else
 status = ma_init(mt_dbl,stack,heap)
 call ga_set_memory_limit(ma_sizeof
(MT_DBL,global,MT_BYTE))
 endif
 if(.not. status) ... !we got an error condition here

In this example, depending on the value returned from ga_uses_ma(), we either increase the heap
size argument by the amount of memory for global arrays or set the limit explicitly through
ga_set_memory_limit(). When GA memory comes from MA we do not need to set this limit
through the GA interface since MA enforces its memory limits anyway. In both cases, the maximum
amount of memory acquired from the operating system is capped by the valuestack+heap+global.

3.4 Termination

The normal way to terminate a GA program is to call the function

 Fortran subroutine ga_terminate()
 C void GA_Terminate()
 C++ void GA::Terminate()

The programmer can also abort a running program for example as part of handling a programmatically
detected error condition by calling the function

 Fortran subroutine ga_error(message, code)
 C void GA_Error(char *message, int code)
 C++ void GA::GAServices::error(char *message, int code)

3.5 Creating arrays

There are two way to create new arrays:

1. From scratch, for regular distribution, using

 n-d Fortran logical function nga_create(type, ndim, dims, array_name,
 chunk, g_a)
 2-d Fortran logical function ga_create(type, dim1, dim2, array_name,
 chunk1, chunk2, g_a)
 C int NGA_Create(int type, int ndim, int dims[], char *array_name,

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

 int chunk[])
 C++ GA::GlobalArray* GA::GAServices::createGA(int type, int ndim,
 int dims[], char *array_name, int chunk[])

or for regular distribution, using

 n-d Fortran logical function nga_create_irreg(type, ndim, dims, array_name,
 map, nblock, g_a)
 2-d Fortran logical function ga_create_irreg(type, dim1, dim2, array_name,
 map1, nblock1, map2, nblock2, g_a)
 C int NGA_Create_irreg(int type, int ndim, int dims[],
 C++ GA::GlobalArray* GA::GAServices::createGA(int type, int ndim,
 int dims[], char *array_name, int map[], int block
[])

2. Based on a template (an existing array) with the function

 Fortran logical function ga_duplicate(g_a, g_b, array_name)
 C int GA_Duplicate(int g_a, char *array_name)
 C++ int GA::GAServices::duplicate(int g_a, char *array_name) - or -
 C++ GA::GlobalArray* GA::GAServices::createGA(int g_a, char *array_name)

In this case, the new array inherits all the properties such as distribution, datatype and dimensions from
the existing array.

With the regular distribution, the programmer can specify block size for none or any dimension. If block
size is not specified the library will create a distribution that attempts to assign the same number of
elements to each processor (for static load balancing purposes). The actual algorithm used is based on
heuristics.

With the irregular distribution, the programmer specifies distribution points for every dimension using
map array argument. The library creates an array with the overall distribution that is a Cartesian product
of distributions for each dimension. A specific example is given in the documentation.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

If an array cannot be created, for example due to memory shortages or an enforced memory
consumption limit, these calls return failure status. Otherwise an integer handle is returned. This handle
represents a global array object in all operations involving that array. This is the only piece of
information the programmer needs to store for that array. All the properties of the object (data type,
distribution data, name, number of dimensions and values for each dimension) can be obtained from the
library based on the handle at any time, see Section 7.4. It is not necessary to keep track of this
information explicitly in the application code.

Note that regardless of the distribution type at most one block can be owned/assigned to a processor.

3.5.1 Creating Arrays with Ghost Cells

Individual processors ordinarily only hold the portion of global array data that is represent by the lo and
hi index arrays returned by a call to nga_distribution or that have been set using the
nga_create_irreg call. However, it is possible to create global arrays where this data is padded by
a boundary region of array elements representing portions of the global array residing on other
processors. These boundary regions can be updated with data from neighboring processors by a call to a
single GA function. To create global arrays with these extra data elements, referred to in the following
as ghost cells, the user needs to call either the functions:

 n-d Fortran logical function nga_create_ghosts(type, dims, width, array_name,
 chunk, g_a)
 C int int NGA_Create_ghosts(int type, int ndim, int dims[], int width
[],
 char *array_name, int chunk[])
 C++ int GA::GAServices::createGA_Ghosts(int type, int ndim, int dims[],

 int width[], char *array_name, int chunk[])

 n-d Fortran logical function nga_create_ghosts_irreg(type, dims, width,
 array_name, map, block, g_a)
 C int int NGA_Create_ghosts_irreg(int type, int ndim, int dims[],
 int width[], char *array_name, int map[], int block[])
 C++ int GA::GAServices::createGA_Ghosts(int type, int ndim, int dims[],

 int width[], char *array_name, int map[], int block[])

These two functions are almost identical to the nga_create and nga_create_irreg functions
described above. The only difference is the parameter array width. This is used to control the width of
the ghost cell boundaries in each dimension of the global array. Different dimensions can be padded
with different numbers of ghost cells, although it is expected that for most applications the widths will

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

be the same for all dimensions. If the width has been set to zero for all dimensions, then these two
functions are completely equivalent to the functionsnga_create and nga_create_irreg.
To illustrate the use of these functions, an ordinary global array is shown below. The boundaries
represent the data that is held on each processor.

For a global array with ghost cells, the data distribution can be visualized as follows:

Each processor holds “visible” data, corresponding to the data held on each processor of an ordinary
global array, and “ghost cell” data, corresponding to neighboring points in the global array that would
ordinarily be held on other processors. This data can be updated in a single call to nga_update,
described under the collective operations section of the user documentation. Note that the ghost cell data
duplicates some portion of the data in the visible portion of the global array. The advantage of having
the ghost cells is that this data ordinarily resides on other processors and can only be retrieved using
additional calls. To access the data in the ghost cells, the user must use the nga_access_ghosts
function described in Section 6.1.

3.6 Destroying arrays

Global arrays can be destroyed by calling the function

 Fortran subroutine ga_destroy(g_a)
 C void GA_Destroy(int g_a)
 C++ void GA::GlobalArray::destroy()

that takes as its argument a handle representing a valid global array. It is a fatal error to call ga_destroy
with a handle pointing to an invalid array.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

All active global arrays are destroyed implicitly when the user callsga_terminate.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/init.html

4. One-sided Operations
Global Arrays provide one-sided, noncollective communication operations that allow to access data in
global arrays without cooperation with the process or processes that hold the referenced data. These
processes do not know what data items in their own memory are being accessed or updated by remote
processes. Moreover, since the GA interface uses global array indices to reference nonlocal data, the
calling process does not even have to know process ids and location in memory where the refernenced
data resides.

The one-sided operations that Global Arrays provide can be summarized into three categories:

4.1 Put/Get

Put and get are two powerful operations for interprocess communication, performing remote write and
read. Because of their one-sided nature, they don't need cooperation from the process(es) that owns the
data. The semantics of these operations do not require the user to specify which remote process or
processes own the accessed portion of a global array. The data is simply accessed as if it were in shared
memory.

Put copies data from the local array to the global array section, which is

 n-D Fortran subroutine nga_put(g_a, lo, hi, buf, ld)
 2-D Fortran subroutine ga_put(g_a, ilo, ihi, jlo, jhi, buf, ld)
 C void NGA_Put(int g_a, int lo[], int hi[], void *buf, int ld[])
 C++ void GA::GlobalArray::put(int lo[], int hi[], void *buf, int ld[])

All the arguments are provided in one call: lo and hi specify where the data should go in the global
array; ld specifies the stride information of the local array buf. The local array should have the same
number of dimensions as the global array; however, it is really required to present the n-dimensional
view of the local memory buffer, that by itself might be one-dimensional.

The operation is transparent to the user, which means the user doesn't have to worry about where the
region defined by lo and hi is located. It can be in the memory of one or many remote processes,
owned by the local process, or even mixed (part of it belongs to remote processes and part of it belongs
to a local process).

Get is the reverse operation of put. It copies data from a global array section to the local array. It is

 n-D Fortran subroutine nga_get(g_a, lo, hi, buf, ld)
 2-D Fortran subroutine ga_get(g_a, ilo, ihi, jlo, jhi, buf, ld)
 C void NGA_Get(int g_a, int lo[], int hi[], void *buf, int ld[])

Remote blockwise write/read ga_put, ga_get

Remote atomic update
ga_acc, ga_read_inc,
ga_scatter_acc

Remote elementwise
write/read

ga_scatter, ga_gather

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

 C++ void GA::GlobalArray::get(int lo[], int hi[], void *buf, int ld[])

Similar to put, lo and hi specify where the data should come from in the global array, and ld specifies
the stride information of the local array buf. The local array is assumed to have the same number of
dimensions as the global array. Users don't need to worry about where the region defined by lo and hi
is physically located.

Example:

For a ga_get operation transferring data from the (11:15,1:5) section of a 2-dimensional 15 x10 global
array into a ocal buffer 5 x10 array we have: (In Fortran notation)

lo={11,1}, hi={15,5}, ld={10}

4.2 Accumulate and read-and-increment

It is often useful in a put operation to combine the data moved to the target process with the data that
resides at that process, rather then replacing the data there. Accumulate and read_inc perform atomic
remote update to a patch (a section of the global array) in the global array and an element in the global
array, respectively. They don't need the cooperation of the process(es) who owns the data. Since the
operations are atomic, the same portion of a global array can be referenced by these operations issued
by multiple processes and the GA will assure the correct and consistent result of the updates.

Accumulate combines the data from the local array with data in the global array section, which is

 n-D Fortran subroutine nga_acc(g_a, lo, hi, buf, ld, alpha)
 2-D Fortran subroutine ga_acc(g_a, ilo, ihi, jlo, jhi, buf, ld, alpha)
 C void NGA_Acc(int g_a, int lo[], int hi[], void *buf, int ld[],
 void *alpha)
 C++ void NGA::GlobalArray::acc(int lo[], int hi[], void *buf, int ld[],
 void *alpha)

The local array is assumed to have the same number of dimensions as the global array. Users don't need
to worry about where the region defined by lo and hi is physically located. The function performs

 global array section (lo[], hi[]) += alpha * buf

 15

10 10

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

Read_inc remotely updates a particular element in the global array, which is

 n-D Fortran subroutine nga_read_inc(g_a, subscript, inc)
 2-D Fortran subroutine ga_read_inc(g_a, i, j, inc)
 C long NGA_Read_inc(int g_a, int subscript[], long inc)
 C++ long GA::GlobalArray::readInc(int subscript[], long inc)

This function applies to integer arrays only. It atomically reads and increments an element in an integer
array. It performs

 a(subsripts) += inc

and returns the original value (before the update) of a(subscript).

4.3 Scatter/Gather

Scatter and gather transfer a specified set of elements to and from global arrays. They are one-sided:
that is they don't need the cooperation of the process(es) who own the referenced elements in the global
array.

Scatter puts array elements into a global array, which is

 n-D Fortran subroutine nga_scatter(g_a, v, subsarray, n)
 2-D Fortran subroutine ga_scatter(g_a, v, i, j, n)
 C void NGA_Scatter(int g_a, void *v, int *subsarray[], int n)
 C++ void GA::GlobalArray::scatter(void *v, int *subsarray[], int n)

It performs (in C notation)

 for(k=0; k<= n; k++) {
 a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]... = v[k];
 }

Example:

Scatter the 5 elements into a 10x10 global array

 Element 1 v[0] = 5 subsArray[0][0] = 2
 subsArray[0][1] = 3
 Element 2 v[1] = 3 subsArray[1][0] = 3
 subsArray[1][1] = 4
 Element 3 v[2] = 8 subsArray[2][0] = 8
 subsArray[2][1] = 5
 Element 4 v[3] = 7 subsArray[3][0] = 3
 subsArray[3][1] = 7
 Element 5 v[4] = 2 subsArray[4][0] = 6
 subsArray[4][1] = 3

After the scatter operation, the five elements would be scattered into the global array as shown in the

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

following figure.

Gather is the reverse operation of scatter. It gets the array elements from a global array into a local
array.

 n-D Fortran subroutine nga_gather(g_a, v, subsarray, n)
 2-D Fortran subroutine ga_gather(g_a, v, i, j, n)
 C void NGA_Gather(int g_a, void *v, int *subsarray[], int n)
 C++ void GA::GlobalArray::gather(void *v, int *subsarray[], int n)

It performs (in C notation)

 for(k=0; k<= n; k++){
 v[k] = a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]...;
 }

4.4 Periodic Interfaces

Periodic interfaces to the one-sided operations have been added to Global Arrays in version 3.1 to
support some computational fluid dynamics problems on multidimensional grids. They provide an index
translation layer that allows to use put,get, and accumulate operations possibly extending beyond the
boundaries of a global array. The references that are outside of the boundaries are wrapped up inside the
global array. To better illustrate these operations, look the following example:

Example:
Assume a two dimensional global array g_a with dimensions 5 X 5.

0 1 2 3 4 5 6 7 8 9
0
1
2 5
3 3 7
4
5
6 2
7
8 8
9

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

To access a patch [2:4,-1:3], one can assume that the array is wrapped over in the second dimension, as
shown in the following figure

Therefore the patch [2:4, -1:3] is

 17 22 2 7 12
 18 23 3 8 13
 19 24 4 9 14

Periodic operations extend the boudary of each dimension in two directions, toward lower bound and
torward
the upper bound. For any dimension with lo(i) to hi(i), where 1 < i < ndim, it extends the range
 from
 [lo(i) : hi(i)]
 to
 [(lo(i)-1-(hi(i)-lo(i)+1)) : (lo(i)-1)], [lo(i) : hi(i)], and [(hi(i)+1) : (hi(i)+1+(hi(i)-lo(i)+1))], or
 [(lo(i)-1-(hi(i)-lo(i)+1)) : (hi(i)+1+(hi(i)-lo(i)+1))].

Even though the patch span in a much large range, the length must always be less, or equals to (hi(i)-lo
(i)+1)).

Example:
For a 2 x 2 array as shown in the following figure, where the dimensions are [1:2, 1:2], periodic
operations would look the range of each dimensions as [-1:4, -1:4].

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

Current version of GA supports three periodic operations. They are

� periodic get,
� periodic put, and
� periodic acc.

Periodic Get copies data from a global array section to a local array, which is almost the same as regular
get, except the indices of the patch can be outside the boundaries of each dimension.

 Fortran subroutine nga_periodic_get(g_a, lo, hi, buf, ld)
 C void NGA_Periodic_get(int g_a, int lo[], int hi[], void *buf, int ld[])
 C++ void GA::GlobalArray::periodicGet(int lo[], int hi[], void *buf, int ld
[])

Similar to regular get, lo and hi specify where the data should come from in the global array, and ld
specifies the stride information of the local array buf.

Example:
Let us look at the first example in this section. It is 5 x 5 two dimensional global array. Assume that the
local buffer is an 4x3 array.

Also ssume that
 lo[0] = -1, hi[0] = 2,
 lo[1] = 4, hi[1] = 6, and
 ld[0] = 4

After the periodic get, the local buffer buf would be

 19 24 4
 20 25 5
 16 21 1
 17 22 2

Periodic Put is the reverse operations of Periodic Get. It copies data from the local array to the global
array section, which is

 Fortran subroutine nga_periodic_put(g_a, lo, hi, buf, ld)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

 C void NGA_Periodic_put(int g_a, int lo[], int hi[], void *buf, int ld[])
 C++ void GA::GlobalArray::periodicPut(int lo[], int hi[], void *buf, int ld
[])

Similar to regular put, lo and hi specify where the data should go in the global array; ld specifies the
stride information of the local array buf.

Periodic Put/Get (also include the Accumulate, which will be discussed later in this section) divide the
patch into several smaller patches. For those smaller patches that are outside the global aray, adjust the
indices so that they rotate back to the original array. After that call the regular Put/Get/Accumulate, for
each patch, to complete the operations.

Example:
Look at the example for periodic get. Because it is a 5 x 5 globla array, the valid indices for each
dimension are

 dimension 0: [1 : 5]
 dimension 1: [1 : 5]

The specified lo and hi are apparently out of the range of each dimension:

 dimemsion 0: [-1 : 2] --> [-1 : 0] -- wrap back --> [4 : 5]
 [1 : 2] ok

 dimension 1: [4 : 6] --> [4 : 5] ok
 [6 : 6] -- wrap back --> [1 : 1]

Hence, there will be four smaller patches after the adjustment. They are

 patch 0: [4 : 5, 4 : 5]
 patch 1: [4 : 5, 1 : 1]
 patch 2: [1 : 2, 4 : 5]
 patch 3: [1 : 2, 1 : 1]

as shown in the following figure

Of course the destination addresses of each samller patch in the local buffer also need to be calculated.

Similar to regular Accumulate, Periodic Accumulate combines the data from the local array with data in

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

the global array section, which is

 Fortran subroutine nga_periodic_acc(g_a, lo, hi, buf, ld, alpha)
 C void NGA_Periodic_acc(int g_a, int lo[], int hi[], void *buf, int ld[],
 void *alpha)
 C++ void GA::GlobalArray::periodicAcc(int lo[], int hi[], void *buf, int ld
[],
 void *alpha)

The local array is assumed to have the same number of dimensions as the global array. Users don't need
to worry about where the region defined by lo and hi is physically located. The function performs

 global array section (lo[], hi[]) += alpha * buf

Example:
Let us look at the same example as above. There is 5 x 5 two dimensional global array. Assume that the
local buffer is an 4x3 array.

Also ssume that
 lo[0] = -1, hi[0] = 2,
 lo[1] = 4, hi[1] = 6, and
 ld[0] = 4.

The local buffer buf is

 1 5 9
 4 6 5
 3 2 1
 7 8 2

and the alpha = 2.

After the Periodic Accumulate operation, the global array will be

4.5 Non-blocking operations

The non-blocking operations (get/put/accumulate) are derived from the blocking interface by adding a
handle argument that identifies an instance of the non-blocking request. Nonblocking operations initiate

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

a communication call and then return control to the application. A return from a nonblocking operation
call indicates a mere initiation of the data transfer process and the operation can be completed locally by
making a call to the wait (e.g. nga_nbwait) routine.

The wait function completes a non-blocking one-sided operation locally. Waiting on a nonblocking put
or an accumulate operation assures that data was injected into the network and the user buffer can be
now be reused. Completing a get operation assures data has arrived into the user memory and is ready
for use. Wait operation ensures only local completion. Unlike their blocking counterparts, the
nonblocking operations are not ordered with respect to the destination. Performance being one reason,
the other reason is that by ensuring ordering we incur additional and possibly unnecessary overhead on
applications that do not require their operations to be ordered. For cases where ordering is necessary, it
can be done by calling a fence operation. The fence operation is provided to the user to confirm remote
completion if needed.

The non-blocking APIs are derived from the blocking interface by adding a handle argument that
identifies an instance of the non-blocking request.

 n-D Fortran subroutine nga_nbput(g_a, lo, hi, buf, ld, nbhandle)
 n-D Fortran subroutine nga_nbget(g_a, lo, hi, buf, ld, nbhandle)
 n-D Fortran subroutine nga_nbacc(g_a, lo, hi, buf, ld, alpha, nbhandle)

 2-D Fortran subroutine ga_nbput(g_a, ilo, ihi, jlo, jhi, buf, ld, nbhandle)
 2-D Fortran subroutine ga_nbget(g_a, ilo, ihi, jlo, jhi, buf, ld, nbhandle)
 2-D Fortran subroutine ga_nbacc(g_a, ilo, ihi, jlo, jhi, buf, ld, alpha,
nbhandle)

 C void NGA_NbPut(int g_a, int lo[], int hi[], void *buf, int ld[],
ga_nbhdl_t* nbhandle)
 C void NGA_NbGet(int g_a, int lo[], int hi[], void *buf, int ld[],
ga_nbhdl_t* nbhandle)
 C void NGA_NbAcc(int g_a, int lo[], int hi[], void *buf, int ld[],
void *alpha, ga_nbhdl_t* nbhandle)

Example: Let us take a simple case for illustration. Say, there are two global arrays i.e. one array
stores pressure and the other stores temperature. If there are two computation phases (first phase
computes pressure and second phase computes temperature), then we can overlap communication
with computation, thus hiding latency.

 nga_get (get_pressure_array)

 nga_nbget(initiates data transfer to get temperature_array, and returns immediately)

 compute_pressure() /* hiding latency - communication is overlapped with computation */

 nga_nbwait(temperature_array - completes data transfer)

 compute_temperature()

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

 C++ void GA::GlobalArray::nbPut(int lo[], int hi[], void *buf, int ld
[], ga_nbhdl_t* nbhandle)
 C++ void GA::GlobalArray::nbGet(int lo[], int hi[], void *buf, int ld
[], ga_nbhdl_t* nbhandle)
 C++ void GA::GlobalArray::nbAcc(int lo[], int hi[], void *buf, int ld
[], void *alpha, ga_nbhdl_t* nbhandle)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/one-side.html

5. Interprocess Synchronization
Global Arrays provide three types of synchronization calls to support different synchronization styles.

5.1 Lock and Mutex

Lock works together with mutex. It is a simple synchronization mechanism used to protect a critical
section.To enter a critical section, typically, one needs to do:

 1. Create mutexes
 2. Lock on a mutex
 3. ...
 Do the exclusive operation in the critical section
 ...
 4. Unlock the mutex
 5. Destroy mutexes

The function

 Fortran logical function ga_create_mutexes(number)
 C int GA_Create_mutexes(int number)
 C++ int GA::GAServices::createMutexes(int number)

creates a set containing the number of mutexes. Only one set of mutexes can exist at a time. Mutexes
can be created and destroyed as many times as needed. Mutexes are numbered: 0, ..., number-1.

The function

 Fortran logical function ga_destroy_mutexes()
 C int GA_Destroy_mutexes()
 C++ int GA::GAServices::destroyMutexes()

destroys the set of mutexes created with ga_create_mutexes.

Both ga_create_mutexes and ga_destroy_mutexes are collective operations.

The functions

 Fortran subroutine ga_lock(int mutex)
 subroutine ga_unlock(int mutex)
 C void GA_lock(int mutex)

Lock with
mutex:

is useful for a shared memory model. One can lock a mutex, to exclusively access a
critical section.

Fence: guarantees that the Global Array operations issued from the calling process are complete.
The fence operation is local.

Sync: is a barrier. It synchronizes processes and ensures that all Global Array operations
completed. Sync operation is collective.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/sync.html

 void GA_unlock(int mutex)
 C++ void GA::GAServices::lock(int mutex)
 void GA::GAServices::unlock(int mutex)

lock and unlock a mutex object identified by the mutex number, respectively. It is a fatal error for a
process to attempt to lock a mutex which has already been locked by this process, or unlock a mutex
which has not been locked by this process.

Example 1:

Use one mutex and the lock mechanism to enter the critical section.

 status = ga_create_mutexes(1)
 if(.not.status) then
 call ga_error('ga_create_mutexes failed ',0)
 endif
 call ga_lock(0)

 ... do something in the critical section
 call ga_put(g_a, ...)
 ...

 call ga_unlock(0)
 if(.not.ga_destroy_mutexes()) then
 call ga_error('mutex not destroyed',0)

5.2 Fence

Fence blocks the calling process until all the data transfers corresponding to the Global Array operations
initiated by this process complete. The typical scenario that it is being used is

 1. Initialize the fence
 2. ...
 Global array operations
 ...
 3. Fence

This would guarantee the operations between step 1 and 3 are complete.

The function

 Fortran subroutine ga_init_fence()
 C void GA_Init_fence()
 C++ void GA::GAServices::initFence()

Initializes tracing of completion status of data movement operations.

The function

10/21/2003http://www.emsl.pnl.gov/docs/global/um/sync.html

 Fortran subroutine ga_fence()
 C void GA_Fence()
 C++ void GA::GAServices::fence()

blocks the calling process until all the data transfers corresponding to GA operations called after
ga_init_fence complete.

ga_fence must be called after ga_init_fence. A barrier, ga_sync, assures completion of all
data transfers and implicitly cancels outstanding ga_init_fence. ga_init_fence and
ga_fence must be used in pairs, multiple calls to ga_fence require the same number of
corresponding ga_init_fence calls. ga_init_fence/ga_fence pairs can be nested.

Example 1:

Since ga_put might return before the data reaches the final destination ga_init_fence and
ga_fence allow the process to wait until the data is actually moved:

 call ga_init_fence()
 call ga_put(g_a, ...)
 call ga_fence()

Example 2:

ga_fence works for multiple GA operations.

 call ga_init_fence()
 call ga_put(g_a, ...)
 call ga_scatter(g_a, ...)
 call ga_put(g_b, ...)
 call ga_fence()

The calling process will be blocked until data movements initiated by two calls to ga_put and one
ga_scatter complete.

5.3 Sync

Sync is a collective operation. It acts as a barrier, which synchronizes all the processes and ensures that
all the Global Array operations are complete at the call.

The function is

 Fortran subroutine ga_sync()
 C void GA_Sync()
 C++ void GA::GAServices::sync()

Sync should be inserted as necessary. With many sync calls, the application performance would suffer.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/sync.html

6. Collective Array Operations
Global Arrays provide functions for collective array operations, targeting both whole arrays and patches
(portions of global arrays). Collective operations require all the processes to make the call. In the
underlying implementation, each process deals with its local data. These functions include:

� basic array operations,
� linear algebra operations, and
� interfaces to third party software packages.

6.1 Basic Array Operations

Global Arrays provide several mechanisms to manipulate contents of the arrays. One can set all the
elements in an array/patch to a specific value, or as a special case set to zero. Since GA does not
explicitly initialize newly created arrays, these calls are useful for initialization of an array/patch. (To fill
the array with different values for each element, one can choose the one sided operation putor each
process can initialize its local portion of an array/patch like ordinary local memory). One can also scale
the array/patch by a certain factor, or copy the contents of one array/patch to another.

6.1.1 Whole Arrays

These functions apply to the entire array.

The function

 Fortran subroutine ga_zero(g_a)
 C void GA_Zero(int g_a)
 C++ void GA::GlobalArray::zero()

sets all the elements in the array to zero.

To assign a single value to all the elements in an array, use the function

 Fortran subroutine ga_fill(g_a, val)
 C void GA_Fill(int g_a, void *val)
 C++ void GA::GlobalArray::fill(void *val)

It sets all the elements in the array to the value val. The val must have the same data type as that of the
array.

The function

 Fortran subroutine ga_scale(g_a, val)
 C voidGA_Scale(int g_a, void *val)
 C++ voidGA::GlobalArray::scale(void *val)

scales all the elements in the array by factorval. Again the val must be the same data type as that of the
array itself.

The above three functions are dealing with one global array, to set values or change all the elements

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

together. The following functions are for copying data between two arrays.

The function

 Fortran subroutine ga_copy(g_a, g_b)
 C voidGA_Copy(int g_a, int g_b)
 C++ voidGA::GlobalArray::copy(const GA::GlobalArray * g_a)

copies the contents of one array to another. The arrays must be of the same data type and have the same
number of elements.

For global arrays containing ghost cells, the ghost cell data can be filled in with the corresponding data
from neighboring processors using the command

 n-d Fortran subroutine ga_copy(g_a, g_b)
 C voidGA_Copy(int g_a, int g_b)
 C++ voidGA::GlobalArray::copy(const GA::GlobalArray * g_a)

 n-d Fortran subroutine ga_update_ghosts(g_a)
 C voidGA_Update_ghosts(int g_a)
 C++ void GA::GlobalArray::updateGhosts()

This operation updates the ghost cell data by assuming periodic, or wrap-around, boundary conditions
similar to those described for the nga_periodic_get operations described above. The wrap-around
conditions are always applied, it is up to the individual application to decide whether or not the data in
the ghost cells should be used. The update operation is illustrated below for a simple 4x2 global array
distributed across two processors. The ghost cells are one element wide in each dimension.

 n-d Fortran logical function nga_update_ghosts_dir(g_a, dimension, idir, flag)
 C int NGA_Update_ghosts_dir(int g_a, int dimension, int idir, int

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

cflag)
 C++ int GA::GlobalArray::updateGhostsDir(int dimension, int idir, int
cflag)

This function can be used to update the ghost cells along individual directions.

It is designed for algorithms that can overlap updates with computation. The variable dimension
indicates which coordinate direction is to be updated (e.g. dimension = 1 would correspond to the y axis
in a two or three dimensional system), the variable idir can take the values +/-1 and indicates whether
the side that is to be updated lies in the positive or negative direction, and cflag indicates whether or not
the corners on the side being updated are to be included in the update. The following calls would be
equivalent to a call to GA_Update_ghosts for a 2-dimensional system:

status = NGA_Update_ghost_dir(g_a,0,-1,1);
status = NGA_Update_ghost_dir(g_a,0,1,1);
status = NGA_Update_ghost_dir(g_a,1,-1,0);
status = NGA_Update_ghost_dir(g_a,1,1,0);

The variable cflag is set equal to 1 (or non-zero) in the first two calls so that the corner ghost cells are
update, it is set equal to 0 in the second two calls to avoid redundant updates of the corners. Note that
updating the ghosts cells using several independent calls to the nga_update_ghost_dir functions is
generally not as efficient as using GA_Update_ghosts unless the individual calls can be effectively
overlapped with computation. This is a collective operation.

6.1.2 Patches

GA provides a set of operations on segments of the global arrays, namely patch operations. These
functions are more general, in a sense they can apply to the entire array(s). As a matter of fact, many of
the Global Array collective operations are based on the patch operations, for instance, the GA_Printis
only a special case of NGA_Print_patch, called by setting the bounds of the patch to the entire
global array. There are two interfaces for Fortran, one for two dimensional and the other for n-
dimensional (one to seven). The (n-dimensional) interface can surely handle the two dimensional case as
well. It is available for backward compatibility purposes. The functions dealing with n-dimensional
patches use the "nga"prefix and those dealing with two dimensional patches start with the "ga"
prefix.

The function

 Fortran subroutine nga_zero_patch(g_a, alo, ahi)
 C void NGA_Zero_patch(int g_a, int lo[] int hi[])
 C++ void GA::GlobalArray::zeroPatch(int lo[] int hi[])

is similar to ga_zero, except that instead of applying to entire array, it sets only the region defined by lo
and hi to zero.

One can assign a single value to all the elements in a patch with the function:

 n-DFortran subroutine nga_fill_patch(g_a, lo, hi, val)
 2-DFortran subroutine ga_fill_patch(g_a, ilo, ihi, jlo, jhi, val)
 C voidNGA_Fill_patch(int g_a, int lo[] int hi[], void *val)
 C++ voidGA::GlobalArray::fillPatch(int lo[] int hi[], void *val)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

The loand hi defines the patch and thevalis the value to set.

The function

 n-DFortran subroutine nga_scale_patch(g_a, lo, hi, val)
 2-DFortran subroutine ga_scale_patch(g_a, ilo, ihi, jlo, jhi, val)
 C voidNGA_Scale_patch(int g_a, int lo[] int hi[], void *val)
 C++ voidGA::GlobalArray::scalePatch(int lo[] int hi[], void *val)

scales the patch defined by lo andhi by the factor val.

The copy patch operation is one of the fundamental and frequently used functions. The function

 n-DFortran subroutine nga_copy_patch(trans, g_a, alo, ahi,
 g_b, blo, bhi)
 2-DFortran subroutine ga_copy_patch(trans, g_a, ailo, aihi, ajlo,
 ajhi, g_b, bilo, bihi, bjlo, bjhi)
 C void NGA_Copy_patch(char trans, int g_a , int alo[], int ahi[],
 int g_b, int blo[], int bhi[])
 C++ voidGA::GlobalArray::copyPatch(char trans, const GA::GlobalArray*
g_a,
 int alo[], int ahi[], int blo[], int bhi[])

copies one patch defined by alo and ahi in one global array g_ato another patch defined by blo
andbhiin another global array g_b. The current implementation requires that the source patch and
destination patch must be on different global arrays. They must also be the same data type. The patches
may be of different shapes, but the number of elements must be the same. During the process of
copying, the transpose operation can be performed by specifying trans.

Example: Assume that there two 8x6 Global Arrays, g_aandg_b,distributed on three processes. The
operation of nag_copy_patch(Fortran notation), from

g_a: alo = {2, 2}, ahi = {4, 5}

to

g_b: blo = {3, 4}, bhi = {6, 6}

and

trans = 0

involves reshaping. Iis illustrated in the following figure.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

One step further, if one also want to perform the transpose operation during the copying, i.e. set trans
= 1, it will look like:

If there is no reshaping or transpose, the operation can be fast (internally callingnga_put). Otherwise,
it would be slow (internally calling nga_scatter, where extra time is spent on preparing the indices).
Also note that extra memory is required to hold the indices if the operation involves reshaping or
transpose.

6.2 Linear Algebra

Global arrays provide three linear algebra operations: addition, multiplication, and dot product. There
are two sets of functions, one for the whole array and the other for the patches.

6.2.1 Whole Arrays

The function

 Fortran subroutine ga_add(alpha, g_a, beta, g_b, g_c)
 C voidGA_Add(void *alpha, int g_a, void *beta,int g_b, int g_c)
 C++ voidGA::GlobalArray::add(void *alpha, const GA::GlobalArray* g_a,
 void *beta, const GA::GlobalArray* g_b)

adds two arrays, g_a and g_b, and saves the results to g_c. The two source arrays can be scaled by
certain factors. This operation requires the two source arrays have the same number of elements and the
same data types, but the arrays can have different shapes or distributions. g_ccan also be g_a or g_b. It

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

is encouraged to use this function when the two source arrays are identical in distributions and shapes,
because of its efficiency. It would be less efficient if the two source arrays are different in distributions
or shapes.

Matrix multiplication operates on two matrices, therefore the array must be two dimensional. The
function

 Fortran subroutine ga_dgemm(transa, transb, m, n, k,
 alpha, g_a, g_b, beta, g_c)
 C voidGA_Dgemm(char ta, char tb, int m, int n, int k,
 double alpha, int g_a, int g_b,
 double beta, int g_c)
 C++ voidGA::GlobalArray::dgemm(char ta, char tb, int m, int n, int k,
 double alpha, const GA::GlobalArray* g_a,
 const GA::GlobalArray* g_b, double beta)

Performs one of the matrix-matrix operations:

 C := alpha*op(A)*op(B) + beta*C,

where op(X) is one of

 op(X) = X or op(X) = X',

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k
matrix, op(B) a k by n matrix and C anm by n matrix.

On entry, transa specifies the form of op(A) to be used in the matrix multiplication
as follows:
 ta = 'N' or 'n', op(A) = A.
 ta = 'T' or 't', op(A) = A'.

The function

 Fortran integer function ga_idot(g_a, g_b)
 double precision functionga_ddot(g_a, g_b)
 double complex function ga_zdot(g_a, g_b)
 C long GA_Idot(int g_a, int g_b)
 double GA_Ddot(int g_a, int g_b)
 DoubleComplex GA_Zdot(int g_a, int g_b)
 C++ long GA::GlobalArray::idot(const GA::GlobalArray* g_a)
 double GA::GlobalArray::ddot(const GA::GlobalArray* g_a)
 DoubleComplex GA::GlobalArray::zdot(const GA::GlobalArray* g_a)

computes the element-wise dot product of two arrays. It is available as three separate functions,
corresponding to integer, double precision and double complex data types.

The following functions apply to the 2-dimensional whole arrays only. There are no corresponding
functions for patch operations.

The function

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

 Fortran subroutine ga_symmetrize(g_a)
 C void GA_Symmetrize(int g_a)
 C++ void GA::GlobalArray::symmetrize()

symmetrizes matrix A represented with handle g_a:A = .5 * (A+A').

The function

 Fortran subroutine ga_transpose(g_a, g_b)
 C void GA_Transpose(int g_a, int g_b)
 C++ void GA::GlobalArray::transpose(const GA::GlobalArray* g_a)

transposes a matrix: B = A'.

6.2.2 Patches

The functions

 n-DFortran subroutine nga_add_patch(alpha, g_a, alo, ahi,
 beta, g_b, blo, bhi,
 g_c, clo, chi)
 2-DFortran subroutine ga_add_patch(alpha, g_a, ailo, aihi, ajlo, ajhi,
 beta, g_b, bilo, bihi, bjlo, bjhi,
 g_c, cilo, cihi, cjlo, cjhi)
 C void NGA_Add_patch(void *alpha, int g_a, int alo[], int ahi[],
 void *beta, int g_b, int blo[], int bhi[],
 int g_c, int clo[], int chi[])
 C++ void GA::GlobalArray::addPatch(void *alpha, const GA::GlobalArray*
g_a,
 int alo[], int ahi[], void *beta, const
GA::GlobalArray* g_b,
 int blo[], int bhi[], int clo[], int chi[])

add element-wise two patches and save the results into another patch. Even though it supports the
addition of two patches with different distributions or different shapes (the number of elements must be
the same), the operation can be expensive, because there can be extra copies which effect memory
consumption. The two source patches can be scaled by a factor for the addition. The function is smart
enough to detect the case that the patches are exactly the same but the global arrays are different in
shapes. It handles the case as if for the arrays were identically distributed, thus the performance will not
suffer.

The matrix multiplication is the only operation on array patches that is restricted to the two dimensional
domain, because of its nature. It works for double and double complex data types. The prototype is

 Fortran subroutine ga_matmul_patch(transa, transb, alpha, beta,
 g_a, ailo, aihi, ajlo, ajhi,
 g_b, bilo, bihi, bjlo, bjhi,
 g_c, cilo, cihi, cjlo, cjhi)
 C void GA_Matmul_patch(char *transa, char* transb, void* alpha, void
*beta,
 int g_a, int ailo, int aihi, int ajlo, int ajhi,
 int g_b, int bilo, int bihi, int bjlo, int bjhi,
 int g_c, int cilo, int cihi, int cjlo, int cjhi)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

 C++ void GA::GlobalArray::matmulPatch(char *transa, char* transb, void*
alpha, void *beta,
 const GlobalArray * g_a, int ailo, int aihi, int ajlo,
int ajhi,
 const GlobalArray * g_b, int bilo, int bihi, int bjlo,
int bjhi,
 int cilo, int cihi, int cjlo, int cjhi)

It performs

 C[cilo:cihi,cjlo:cjhi] := alpha* AA[ailo:aihi,ajlo:ajhi] *
 BB[bilo:bihi,bjlo:bjhi]) + beta*C[cilo:cihi,cjlo:cjhi]

where AA = op(A), BB = op(B), and op(X) is one of

 op(X) = X or op(X) = X',

Valid values for transpose argument: 'n', 'N', 't', 'T'.

The dot operation computes the element-wise dot product of two (possibly transposed) patches. It is
implemented as three separate functions, corresponding to integer, double precision and double complex
data types. They are

 n-DFortran integer function nga_idot_patch(g_a, ta, alo, ahi,
 g_b, tb, blo, bhi)
 double precision functionnga_ddot_patch(g_a, ta, alo, ahi,
 g_b, tb, blo, bhi)
 double complex functionnga_zdot_patch(g_a, ta, alo, ahi,
 g_b, tb, blo, bhi)

 2-DFortran integer function ga_idot_patch(g_a, ta, ailo, aihi,
 ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi)
 double precision functionga_ddot_patch(g_a, ta, ailo, aihi,
 ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi)
 double complex functionga_zdot_patch(g_a, ta, ailo, aihi,
 ajlo, ailo, g_b, tb, bilo, bihi, bjlo, bjhi)

 C Integer NGA_Idot_patch(int g_a, char* ta, int alo[], int ahi[],
 int g_b, char* tb, int blo[], int bhi[])
 double NGA_Ddot_patch(int g_a, char* ta, int alo[], int ahi[],
 int g_b, char* tb, int blo[], int bhi[])
 DoubleComplex NGA_Zdot_patch(int g_a, char* ta, int alo[], int ahi
[],
 int g_b, char* tb, int blo[], int bhi[])

 C++ IntegerGA::GlobalArray::idotPatch(const GA::GlobalArray* g_a,
 char* ta, int alo[], int ahi[],
 char* tb, int blo[], int bhi[])
 double GA::GlobalArray::ddotPatch(const GA::GlobalArray* g_a,
 char* ta, int alo[], int ahi[],
 char* tb, int blo[], int bhi[])
 DoubleComplex GA::GlobalArray::zdotPatch(const GA::GlobalArray* g_a,

 char* ta, int alo[], int ahi[],
 char* tb, int blo[], int bhi[])

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

The patches should be of the same data types and have the same number of elements. Like the array
addition, if the source patches have different distributions/shapes, or it requires transpose, the operation
would be less efficient, because there could be extra copies and/or memory consumption.

6.2.3 Element-wise operations

These operations work on individual array elements rather than arrays as matrices in the sense of linear
algebra operations. For example multiplication of elements stored in arrays is a completely different
operation than matrix multiplication.

Fortransubroutine ga_abs_value(g_a)
C void GA_Abs_value(int g_a)
C++ void GA::GlobalArray::absValue(int g_a)

Take element-wise absolute value of the array.

Fortran subroutine ga_abs_value_patch(g_a, lo, hi)
C void GA_Abs_value_patch(int g_a, int lo[], int hi[])
C++ void GA::GlobalArray::absValuePatch(int lo[], int hi[])

Take element-wise absolute value of the patch.

Fortran subroutine ga_add_constant(g_a, alpha)
C void GA_Add_constant(int g_a, void* alpha)
C++ void GA::GlobalArray::addConstant(void* alpha)

Add the contant pointed by alpha to each element of the array.

Fortran subroutine ga_add_constant_patch(g_a, lo, hi, alpha)
C void GA_Add_constant_patch(int g_a, int lo[], int hi[], void*alpha)
C++ void GA::GlobalArray::addConstantPatch(void* alpha)

Add the contant pointed by alpha to each element of the patch.

Fortran subroutine ga_recip(g_a)
C void GA_Recip(int g_a)
C++ void GA::GlobalArray::recip()

Take element-wise reciprocal of the array.

Fortran subroutine ga_recip_patch(g_a, lo, hi)
C void GA_Recip_patch(int g_a, int lo[], int hi[])
C++ void GA::GlobalArray::recipPatch(int lo[], int hi[])

Take element-wise reciprocal of the patch.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

Fortran subroutine ga_elem_multiply(g_a, g_b, g_c)
C void GA_Elem_multiply(int g_a, int g_b, int g_c)
C++ void GA::GlobalArray::elemMultiply(const GA::GlobalArray * g_a,
 const GA::GlobalArray * g_b)

Computes the element-wise product of the two arrays
which must be of the same types and same number of
elements. For two-dimensional arrays,

 c(i, j) = a(i,j)*b(i,j)

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_multiply__patch(g_a, alo, ahi, g_b, blo, bhi, g_c, clo,chi)
C void GA_Elem_multiply__patch(int g_a, int alo[], int ahi[], int g_b, int blo[],
 int bhi[], int g_c, int clo[], int chi[])
C++ void GA::GlobalArray::elemMultiplyPatch(const GA::GlobalArray * g_a,
 int alo[], int ahi[],
 const GA::GlobalArray * g_b, int blo[],
 int bhi[], int clo[], int chi[])

Computes the element-wise product of the two patches
which must be of the same types and same number of
elements. For two-dimensional arrays,

 c(i, j) = a(i,j)*b(i,j)

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_divide(g_a, g_b, g_c)
C void GA_Elem_divide(Integer g_a, Integer g_b, Integer g_c)
C++ void GA::GlobalArray::elemDivide(const GA::GlobalArray * g_a,
 const GA::GlobalArray * g_b)

Computes the element-wise quotient of the two arrays
which must be of the same types and same number of
elements. For two-dimensional arrays,

 c(i, j) = a(i,j)/b(i,j)

The result (c) may replace one of the input arrays (a/b). If one of the elements of array g_b is zero, the
quotient for the element of g_c will be set to
GA_NEGATIVE_INFINITY.

Fortran subroutine ga_elem_divide__patch(g_a, alo, ahi, g_b, blo, bhi, g_c, clo, chi)
C void GA_Elem_divide__patch(int g_a, int alo[], int ahi[], int g_b, int blo[],
 int bhi[], int g_c, int clo[], int chi[])
C++ void GA::GlobalArray::elemDividePatch(const GA::GlobalArray * g_a,

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

 int alo[], int ahi[],
 const GA::GlobalArray * g_b, int blo[],
 int bhi[], int clo[], int chi[])

Computes the element-wise quotient of the two patches
which must be of the same types and same number of
elements. For two-dimensional arrays,

 c(i, j) = a(i,j)/b(i,j)

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_maximum(g_a, g_b, g_c)
C void GA_Elem_maximum(Integer g_a, Integer g_b, Integer g_c)
C++ void GA::GlobalArray::elemMaximum(const GA::GlobalArray * g_a,
 const GA::GlobalArray * g_b)

Computes the element-wise maximum of the two arrays
which must be of the same types and same number of
elements. For two dimensional arrays,

 c(i, j) = max{a(i,j), b(i,j)}

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_maximum__patch(g_a, alo, ahi, g_b, blo, bhi, g_c, clo, chi)
C void GA_Elem_maximum__patch(int g_a, int alo[], int ahi[], int g_b, int blo[],
 int bhi[], int g_c, int clo[], int chi[])
C++ void GA::GlobalArray::elemMaximumPatch(const GA::GlobalArray * g_a,
 int alo[], int ahi[],
 const GA::GlobalArray * g_b, int blo[],
 int bhi[], int clo[], int chi[])

Computes the element-wise maximum of the two patches
which must be of the same types and same number of
elements. For two-dimensional of noncomplex arrays,

 c(i, j) = max{a(i,j), b(i,j)}

If the data type is complex, then
 c(i, j).real = max{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0.

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_minimum(g_a, g_b, g_c)
C void GA_Elem_minimum(Integer g_a, Integer g_b, Integer g_c);
C++ void GA::GlobalArray::elemMinimum(const GA::GlobalArray * g_a,

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

 const GA::GlobalArray * g_b)

Computes the element-wise minimum of the two arrays
which must be of the same types and same number of
elements. For two dimensional arrays,

 c(i, j) = min{a(i,j), b(i,j)}

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_elem_minimum__patch(g_a, alo, ahi, g_b, blo, bhi, g_c, clo, chi)
C void GA_Elem_minimum__patch(int g_a, int alo[], int ahi[], int g_b,
 int blo[], int bhi[], int g_c, int clo[], int chi[])
C++ void GA::GlobalArray::elemMinimumPatch(const GA::GlobalArray * g_a,
 int alo[], int ahi[],
 const GA::GlobalArray * g_b, int blo[],
 int bhi[], int clo[], int chi[])

Computes the element-wise minimum of the two patches
which must be of the same types and same number of
elements. For two-dimensional of noncomplex arrays,

 c(i, j) = min{a(i,j), b(i,j)}

If the data type is complex, then
 c(i, j).real = min{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0.

The result (c) may replace one of the input arrays (a/b).

Fortran subroutine ga_shift_diagonal(g_a, c)
C void GA_Shift_diagonal(int g_a, void *c)
C++ void GA::GlobalArray::shiftDiagonal(void *c)

Adds this constant to the diagonal elements of the matrix.

Fortran subroutine ga_set_diagonal(g_a, g_v)
C void GA_Set_diagonal(int g_a, int g_v)
C++ void GA::GlobalArray::setDiagonal(const GA::GlobalArray * g_v)

Sets the diagonal elements of this matrix g_a with the elements of the vector g_v.

Fortran subroutine ga_zero_diagonal(g_a)
C void GA_Zero_diagonal(int g_a)
C++ void GA::GlobalArray::zeroDiagonal()

Sets the diagonal elements of this matrix g_a with zeros.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

Fortran subroutine ga_add_diagonal(g_a, g_v)
C void GA_Add_diagonal(int g_a, int g_v)
C++ void GA::GlobalArray::addDiagonal(const GA::GlobalArray * g_v)

Adds the elements of the vector g_v to the diagonal of this matrix g_a.

Fortran subroutine ga_get_diag(g_a, g_v)
C void GA_Get_diag(int g_a, int g_v)
C++ void GA::GlobalArray::getDiagonal(const GA::GlobalArray * g_v)

Inserts the diagonal elements of this matrix g_a into the vector g_v.

Fortran subroutine ga_scale_rows(g_a, g_v)
C void GA_Scale_rows(int g_a, int g_v)
C++ void GA::GlobalArray::scaleRows(const GA::GlobalArray * g_v)

Scales the rows of this matrix g_a using the vector g_v.

Fortran subroutine ga_scale_cols(g_a, g_v)
C void GA_Scale_cols(int g_a, int g_v)
C++ void GA::GlobalArray::scaleCols(const GA::GlobalArray * g_v)

Scales the columns of this matrix g_a using the vector g_v.

Fortran subroutine ga_norm1(g_a, nm)
C void GA_Norm1(int g_a, double *nm)
C++ void GA::GlobalArray::norm1(double *nm)

Computes the 1-norm of the matrix or vector g_a.

Fortran subroutine ga_norm_infinity(g_a, nm)
C void GA_Norm_infinity(int g_a, double *nm)
C++ void GA::GlobalArray::normInfinity(double *nm)

Computes the 1-norm of the matrix or vector g_a.

Fortran subroutinega_median(g_a, g_b, g_c, g_m)
C void GA_Median(int g_a, int g_b, int g_c, int g_m)
C++ void GA::GlobalArray::median(const GA::GlobalArray * g_a,
 const GA::GlobalArray * g_b,
 const GA::GlobalArray * g_c)

Computes the componentwise Median of three arrays g_a, g_b, and g_c, and
stores the result in this array g_m. The result (m) may replace one of the input arrays (a/b/c).

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

Fortran subroutine ga_median_patch(g_a, alo, ahi, g_b, blo, bhi, g_c,
 clo, chi, g_m,mlo, mhi)
C void GA_Median_patch(int g_a, int alo[], int ahi[], int g_b, int blo[],
 int bhi[], int g_c, int clo[], int chi[], int g_m,
 int mlo[],int mhi[])
C++ void GA::GlobalArray::medianPatch(const GA::GlobalArray * g_a, int alo[], int ahi[],
 const GA::GlobalArray * g_b, int blo[], int bhi[],
 const GA::GlobalArray * g_c, int clo[], int chi[],
 int mlo[],int mhi[])

Computes the componentwise Median of three patches g_a, g_b, and g_c, and
stores the result in this patch g_m. The result (m) may replace one of the input patches (a/b/c).

Fortran subroutine ga_step_max(g_a, g_b, step)
C void GA_Step_max(int g_a, int g_b, double *step)
C++ void GA::GlobalArray::stepMax(const GA::GlobalArray *g_a, double *step)

Calculates the largest multiple of a vector g_b that can be added
to this vector g_a while keeping each element of this vector
nonnegative.

Fortran subroutine ga_step_max2(g_xx, g_vv, g_xxll, g_xxuu, step2)
C void GA_Step_max2(int g_xx, int g_vv, int g_xxll, int g_xxuu, double *step2)
C++ void GA::GlobalArray::stepMax2(const GA::GlobalArray *g_vv,
 const GA::GlobalArray *g_xxll,
 const GA::GlobalArray *g_xxuu, double *step2)

Calculates the largest step size that should be used in a projected bound line search.

Fortran subroutine ga_step_max_patch(g_a, alo, ahi, g_b, blo, bhi, step)
C void GA_Step_max_patch(int g_a, int *alo, int *ahi, int g_b, int *blo,
 int *bhi, double *step)
C++ void GA::GlobalArray::stepMaxPatch(int *alo, int *ahi, const GA::GlobalArray * g_b,
 int *blo, int *bhi, double *step)

Calculates the largest multiple of a vector g_b that can be added
to this vector g_a while keeping each element of this vector
nonnegative.

Fortran subroutine ga_step_max2_patch(g_xx, xxlo, xxhi, g_vv,vvlo, vvhi, g_xxll,
 xxlllo, xxllhi, g_xxuu, xxuulo, xxuuhi, step2)
C void GA_Step_max2_patch(int g_xx, int *xxlo, int *xxhi, int g_vv,
 int *vvlo, int *vvhi, int g_xxll, int *xxlllo, int *xxllhi,
 int g_xxuu, int *xxuulo, int *xxuuhi, double *step2)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

C++ void GA::GlobalArray::stepMax2Patch(int *xxlo, int *xxhi,
 const GA::GlobalArray * g_vv, int *vvlo, int *vvhi,
 const GA::GlobalArray * g_xxll, int *xxlllo, int *xxllhi,
 const GA::GlobalArray * g_xxuu, int *xxuulo,
 int *xxuuhi, double *step2)

Calculates the largest step size that should be used in a projected bound line search.

6.3 Interfaces to Third Party Software Packages

There are many existing software packages designed for solving engineering problems. They are
specialized in one or two problem domains, such as solving linear systems, eigen-vectors, and
differential equations, etc. Global Arrays provide interfaces to several of these packages.

6.3.1 Scalapack

Scalapack is a well known software library for linear algebra computations on distributed memory
computers. Global Arrays uses this library to solve systems of linear equations and also to invert
matrices.

The function

 Fortran integer function ga_solve(g_a, g_b)
 C int GA_Solve(int g_a, int g_b)
 C++ int GA::GlobalArray::solve(const GA::GlobalArray * g_a)

solves a system of linear equations A * X = B. It first will call the Cholesky factorization routine and, if
successful, will solve the system with the Cholesky solver. If Cholesky is not able to factorizeA, then it
will call the LU factorization routine and will solve the system with forward/backward substitution. On
exit B will contain the solutionX.

The function

 Fortran integer function ga_llt_solve(g_a, g_b)
 C int GA_Llt_solve(int g_a, int g_b)
 C++ int GA::GlobalArray::lltSolve(const GA::GlobalArray * g_a)

also solves a system of linear equations A * X = B, using the Cholesky factorization of an NxN double
precision symmetric positive definite matrix A (handle g_a). On successful exit B will contain the
solution X.

The function

 Fortran subroutinega_lu_solve(trans, g_a, g_b)
 C void GA_Lu_solve(char trans, int g_a, int g_b)
 C++ void GA::GlobalArray::luSolve(char trans, const GA::GlobalArray * g_a)

solves the system of linear equations op(A)X = B based on the LU factorization. op(A) = A or A'
depending on the parameter trans.MatrixA is a general real matrix. Matrix B contains possibly
multiplerhs vectors. The array associated with the handle g_b is overwritten by the solution matrix X.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

The function

 Fortran integer function ga_spd_invert(g_a)
 C int GA_Spd_invert(int g_a)
 C++ int GA::GlobalArray::spdInvert()

computes the inverse of a double precision matrix using the Cholesky factorization of a NxN double
precision symmetric positive definite matrix A stored in the global array represented by g_a. On
successful exit, A will contain the inverse.

6.3.2 PeIGS

The PeIGS library contains subroutines for solving standard and generalized real symmetric
eigensystems. All eigenvalues and eigenvectors can be computed. The library is implemented using a
message-passing model and is portable across many platforms. For more information and availability
send a message to gi_fann@pnl.gov. Global Arrays use this library to solve eigen-value problems.

The function

 Fortran subroutine ga_diag(g_a, g_s, g_v, eval)
 C void GA_Diag(int g_a, int g_s, int g_v, void *eval)
 C++ void GA::GlobalArray::diag(const GA::GlobalArray*g_s,
 const GA::GlobalArray* g_v, void *eval)

solves the generalized eigen-value problem returning all eigen-vectors and values in ascending order.
The input matrices are not overwritten or destroyed.

The function

 Fortran subroutine ga_diag_reuse(control, g_a, g_s, g_v, eval)
 C void GA_Diag_reuse(int control, int g_a, int g_s, int g_v,void *eval)
 C++ void GA::GlobalArray::diagReuse(int control, const GA::GlobalArray*
g_s,
 const GA::GlobalArray*g_v, void *eval)

solves the generalized eigen-value problem returning all eigen-vectors and values in ascending order.
Recommended for REPEATED calls if g_sis unchanged.

The function

 Fortran subroutine ga_diag_std(g_a, g_v, eval)
 C void GA_Diag_std(int g_a, int g_v, void *eval)
 C++ void GA::GlobalArray::diagStd(const GA::GlobalArray* g_v, void *eval)

solves the standard (non-generalized) eigenvalue problem returning all eigenvectors and values in the
ascending order. The input matrix is neither overwritten nor destroyed.

6.3.3 Interoperability with Others

Global Arrays are interoperable with several other libraries, but do not provide direct interfaces for
them. For example, one can make calls to and link with these libraries:

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

PETSc(the Portable, Extensible Toolkit for Scientific Computation) is developed by the Argonne
National Laboratory. PETSc is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications modeled by partial differential equations. It employs the MPI standard for all
message-passing communication, and is written in a data-structure-neutral manner to enable easy reuse
and flexibility. Here is the instructions for using PETSc with GA.

CUMULVS (Collaborative User Migration User Library for Visualization and Steering) is developed by
the Oak Ridge National Laboratory. CUMULVS is a software framework that enables programmers to
incorporate fault-tolerance, interactive visualization and computational steering into existing parallel
programs. Here is the instructions for using CUMULVS with GA.

6.4 Synchronization Control in Collective Operations

GA collective array operations are implemented by exploiting locality information to minimize or even
completely avoid interprocessor communication or data copying. Before each processor accesses its own
portion of the GA data we must assure that the data is in a consistent state. That means that there are no
outstanding communication operations targeting that given global array portion pending while the data
owner is accessing it. To accomplish that the GA collective array operations have implicit
synchronization points: at the beginning and at the end of the operation. However, in many cases when
collective array operations are called back-to-back or if the user does an explicit sync just before a
collective array operation, some of the internal synchronization points could be merged or even removed
if user can guarantee that the global array data is in the consistent state. The library offers a call for the
user to eliminate the redundant synchronization points based on his/her knowledge of the application.

The function

 Fortran subroutine ga_mask_sync(prior_sync_mask,post_sync_mask)
 C void GA_Mask_sync(int prior_sync_mask,int post_sync_mask)
 C++ void GA::GlobalArray::maskSync(int prior_sync_mask, int post_sync_mask)

This operation should be used with a lot of care and only when the application code has been debugged
 and the user wishes to tune its performance. Making a call to this function with prior_sync_mask
parameter set to false disables the synchronization done at the beginning of first collective array
operation called after a call to this function. Similarly, making a call to this function by setting the
post_sync_mask parameter to false disables the synchronization done at the ending of the first collective
array operation called after a call to this function.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/collective.html

7. Utility Operations
Global Arrays include some utility functions to provide process, data locality, information, check the
memory availability, etc. There are also several handy functions that print array distribution
information, or summarize array usage information.

7.1 Locality Information

For a given global array element, or a given patch, sometimes it is necessary to find out who owns this
element or patch. The function

 n-DFortran logical functionnga_locate(g_a, subscript, owner)
 2-DFortran logical functionga_locate(g_a, i, j, owner)
 C int NGA_Locate(int g_a, int subscript[])
 C++ int GA::GlobalArray::locate(int subscript[])

tells who (process id) owns the elements defined by the array subscripts.

The function

 n-DFortran logical functionnga_locate_region(g_a, lo, hi, map,proclist, np)
 2-DFortran logical functionga_locate_region(g_a, ilo, ihi, jlo,jhi, map, np)
 C int NGA_Locate_region(int g_a, int lo[], int hi[],int *map[], int
procs[])
 C++ int GA::GlobalArray::locateRegion(int lo[], int hi[],int *map[],
int procs[])

returns a list of GA process IDs that 'own' the patch.

The Global Arrays support an abstraction of a distributed array object. This object is represented by an
integer handle. A process can access its portion of the data in the global array. To do this, the following
steps need to be taken:

1. find the distribution of an array, which part of the data the calling process own
2. access the data
3. operate on the date: read/write
4. release the access to the data

The function

 n-DFortran subroutine nga_distribution(g_a, iproc, lo, hi)
 2-DFortran subroutine ga_distribution(g_a, iproc, ilo, ihi, jlo, jhi)
 C void NGA_Distribution(int g_a, int iproc, int lo[], int hi[])
 C++ void GA::GlobalArray::distribution(int iproc, int lo[], int hi[])

finds out the range of the global array g_athat process iproc owns. iproccan be any valid process
ID.

The function

 n-DFortran subroutine nga_access(g_a, lo, hi, index, ld)

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

 2-DFortran subroutine ga_access(g_a, ilo, ihi, jlo, jhi, index, ld)
 C void NGA_Access(int g_a, int lo[], int hi[], void *ptr, int ld[])
 C++ void GA::GlobalArray::access(int lo[], int hi[], void *ptr, int ld
[])

provides access to local data in the specified patch of the array owned by the calling process. The C
interface gives the pointer to the patch. The Fortran interface gives the patch address as the index
(distance) from the reference address (the appropriate MA base addressing array).

The function

 n-DFortran subroutine nga_release(g_a, lo, hi)
 2-DFortran subroutine ga_release(g_a, ilo, ihi, jlo, jhi)
 C void NGA_Release(int g_a, lo[], int hi[])
 C++ void GA::GlobalArray::release(lo[], int hi[])

and

 n-DFortran subroutine nga_release_update(g_a, lo, hi)
 2-DFortran subroutine ga_release_update(g_a, ilo, ihi, jlo, jhi)
 C void NGA_Release_update(int g_a, int lo[], int hi[])
 C++ void GA::GlobalArray::releaseUpdate(int lo[], int hi[])

releases access to a global array. The former set is used when the data was read only and the latter set is
used when the data was accessed for writing.

Global Arrays also provide a function to compare distributions of two arrays. It is

 Fortran subroutine ga_compare_distr(g_a, g_b)
 C void NGA_Compare_distr(int g_a, int g_b)
 C++ void GA::GlobalArray::compareDistr(const GA::GlobalArray * g_a)

The only method currently available for accessing the ghost cell data for global arrays that have ghost
cell data is to use the nga_access_ghosts funtion. This function is similar to the nga_access
function already described, except that it returns an index (pointer) to the origin of the locally held patch
of global array data. This local patch includes the ghost cells so the index (pointer) will be pointing to a
ghost cell. The nga_access_ghosts function also returns the physical dimensions of the local data
patch, which includes the additional ghost cells, so it is possible to access both the visible data of the
global array and the ghost cells using this information. The nga_access_ghosts functions have the
format

 n-d Fortran subroutine nga_access_ghosts(g_a, dims, index, ld)
 C void NGA_access_ghosts (int g_a, int dims[], void *ptr, int ld[])
 C++ void GA::GlobalArray::accessGhosts(int dims[], void *ptr, int ld[])

The array dims comes back with the dimensions of the local data patch, including the ghost cells, for
each dimension of the global array, ptr is an index (pointer) identifying the beginning of the local data
patch, and ld is any array of leading dimensions fpr the local data patch, which also includes the ghost
cells. The array ld is actually redundant since the information in ld is also contained in dims, but is
included to maintain continuity with other GA functions.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

7.1.1 Process Information

When developing a program, one needs to use charateristics of its parallel environment: process ID,
how many processes are working together and what their IDs are, and what the topology of processes
look like. To answer these questions, the following functions can be used.

The function

 Fortran integer function ga_nodeid()
 C int GA_Nodeid()
 C++ int GA::GAServices::nodeid()

returns the GA process ID of the current process, and the function

 Fortran integer function ga_nnodes()
 C int GA_Nnodes()
 C++ int GA::GAServices::nodes()

tells the number of computing processes.

The function

 Fortran subroutine ga_proc_topology(ga, proc, prow, pcol)
 C void NGA_Proc_topology(int g_a, int proc, int coordinates)
 C++ void GA::GlobalArray::procTopology(int proc, int coordinates)

determines the coordinates of the specified processor in the virtual processor grid corresponding to the
distribution of array g_a.

Example: An global array is distributed on 9 processors. The processors are numbered from 0 to 8 as
shown in the following figure. If one wants to find out the coordinates of processor 7 in the virtual
processor grid, by calling the fuction ga_proc_topology, the coordinates of (2,1) will be
returned.

7.1.2 Cluster Information

The following functions can be used to obtain information like number of nodes that the program is
running on, node ID of the process, and other cluster information as discussed below:

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

The function

 Fortran integer function ga_cluster_nnodes()
 C int GA_Cluster_nnodes()
 C++ int GA::GAServices::clusterNnodes()

returns the total number of nodes that the program is running on. On SMP architectures, this will be less
than or equal to the total number of processors.

The function

 Fortran integer function ga_cluster_nodeid()
 C int GA_Cluster_nodeid()
 C++ int GA::GAServices::clusterNodeid()

returns the node ID of the process. On SMP architectures with more than one processor per node,
several processes may return the same node id.

The function

 Fortran integer function ga_cluster_nprocs(inode)
 C int GA_Cluster_nprocs(int inode)
 C++ int GA::GAServices::clusterNprocs(int inode)

returns the number of processors available on node inode.

The function

 Fortran integer function ga_cluster_procid(inode, iproc)
 C int GA_Cluster_procid(int inode, int iproc)
 C++ int GA::GAServices::clusterProcid(int inode, int iproc)

returns the processor id associated with node inode and the local processor id iproc. If node inode has N
processors, then the value of iproc lies between 0 and N-1.

Example: 2 nodes with 4 processors each. Say, there are 7 processes created. Assume 4 processes on
node 0 and 3 processes on node 1. In this case: number of nodes=2, node id is either 0 or 1 (for example,
nodeid of process 2 is 0), number of processes in node 0 is 4 and node 1 is 3. The global rank of each
process is shown in the figure and also the local rank (rank of the process within the
node.i.e.cluster_procid) is shown in the paranthesis.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

7.2 Memory Availability

Even though the memory management does not have to be performed directly by the user, Global
Arrays provide functions to verify the memory availability. Global Arrays provide the following
information:

1. How much memory has been used by the allocated global arrays.
2. How much memory is left for allocation of new the global arrays.
3. Whether the memory in global arrays comes from theMemory Allocator (MA).
4. Is there any limitation for the memory usage by the Global Arrays.

The function

 Fortran integer function ga_inquire_memory()
 C size_t GA_Inquire_memory()
 C++ size_t GA::GAServices::inquireMemory()

answers the first question. It returns the amount of memory (in bytes) used in the allocated global arrays
on the calling processor.

The function

 Fortran integer function ga_memory_avail()
 C size_t GA_Memory_avail()
 C++ size_t GA::GAServices::memoryAvailable()

answers the second question. It returns the amount of memory (in bytes) left for allocation of new
global arrays on the calling processor.

Memory Allocator(MA) is a library of routines that comprises a dynamic memory allocator for use by
C, Fortran, or mixed-language applications. Fortran- 77 applications require such a library because the
language does not support dynamic memory allocation. C (and Fortran-90) applications can benefit from
using MA instead of the ordinary malloc() and free() routines because of the extra features MA

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

provides. The function

 Fortran logical function ga_uses_ma()
 C int GA_Uses_ma()
 C++ int GA::GAServices::usesMA()

tells whether the memory in Global Arrays comes from the Memory Allocator (MA) or not.

The function

 Fortran logical function ga_memory_limited()
 C int GA_Memory_limited()
 C++ int GA::GAServices::memoryLimited()

Indicates if a limit is set on memory usage in Global Arrays on the calling processor.

7.3 Message-Passing Wrappers to Reduce/Broadcast Operations

Global Arrays provide convenient operations for broadcast/reduce regardless of the message-passing
library the process is running with.

The function

 Fortran subroutine ga_brdcst(type, buf, lenbuf, root)
 C void GA_Brdcst(void *buf, int lenbuf, int root)
 C++ void GA::GAServices::brdcst(void *buf, int lenbuf, int root)

broadcasts from process root to all other processes a message buffer of length lenbuf.

The functions

 Fortran subroutine ga_igop(type, x, n, op)
 subroutine ga_dgop(type, x, n, op)
 C void GA_Igop(long x[], int n, char *op)
 void GA_Dgop(double x[], int n, char *op)
 C++ void GA::GAServices::igop(long x[], int n, char *op)
 void GA::GAServices::dgop(double x[], int n, char *op)

'sum' elements of X(1:N) (a vector present on each process) across all nodes using the communicative
operator op, The result is broadcasted to all nodes. Supported operations include

 +, *, Max, min, Absmax, absmin

The integer version also includes the bitwise ORoperation.

These operations unlike ga_sync, do not include embedded ga_genceoperatins.

7.4 Others

There are some other useful functions in Global Arrays. One group is about inquiring the array

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

attributes. Another group is about printing the array or part of the array.

7.4.1 Inquire

A global array is represented by a handle. Given a handle, one can get the array information, such as the
array name, memory used, array data type, and array dimension information, with the help of following
functions.

The functions

 n-D Fortran subroutine nga_inquire(g_a, type, ndim, dims)
 2-D Fortran subroutine nga_inquire(g_a, type, dim1, dim2)
 C void NGA_Inquire(int g_a, int *type, int *ndim, int dims[])
 C++ void GA::GlobalArray::inquire(int *type, int *ndim, int dims[])

return the data type of the array, and also the dimensions of the array.

The function

 Fortran subroutine ga_inquire_name(g_a, array_name)
 C char* GA_Inquire_name(int g_a)
 C++ char* GA::GlobalArray::inquireName()

finds out the name of the array.

One can also inquire the memory being used with ga_inquire_memory(discussed above).

7.4.2 Print

Global arrays provide functions to print

1. content of the global array
2. content of a patch of global array
3. the status of array operations
4. a summary of allocated arrays

The function

 Fortran subroutine ga_print(g_a)
 C void GA_Print(int g_a)
 C++ void GA::GlobalArray::print()

prints the entire array to the standard output. The output is formatted.

A utility function is provided to print data in the patch, which is

 Fortran subroutine nga_print_patch(g_a, lo, hi, pretty)
 C void NGA_Print_patch(int g_a, int lo[], int hi[], int pretty)
 C++ void GA::GlobalArray::printPatch(int lo[], int hi[], int pretty)

One can either specify a formatted output (set prettyto one) where the output is formatted and rows/

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

columns are labeled, or (setpretty to zero) just dump all the elements of this patch to the standard
output without any formatting.

The function

 Fortran subroutine ga_print_stats()
 C void GA_Print_stats()
 C++ void GA::GAServices::printStats()

prints the global statistics information about array operations for the calling process, including

� number of calls to the GA create/duplicate, destroy, get, put, scatter, gather, and read_and_inc
operations

� total amount of data moved in the GA primitive operations
� amount of data moved in GA primitive operations to logically remote locations
� maximum memory consumption in global arrays, the "high-water mark"

The function

 Fortran subroutine ga_print_distribution(g_a)
 C void GA_Print_distribution(int g_a)
 C void GA::GlobalArray::printDistribution()

prints the global array distribution. It shows mapping array data to the processes.

The function

 Fortran subroutine ga_summarize(verbose)
 C void GA_Summarize(int verbose)
 C++ void GA::GAServices::summarize(int verbose)

prints info about allocated arrays. verbose can be either one or zero.

7.4.3 Miscellaneous

The function

 Fortran subroutine ga_check_handle(g_a, string)
 C void GA_Check_handle(int g_a, char *string)
 C++ void GA::GlobalArray::checkHandle(char *string)

checks if the global array handle g_a represents a valid array. The string is the message to be printed
when the handle is invalid.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/utility.html

GA++: C++ Bindings for Global Arrays

8.1 Overview

GA++ provides a C++ interface to global arrays (GA) libraries. Here is the doxygen documentation of
GA++: http://www.emsl.pnl.gov:2080/docs/global/ga++/index.html The GA C++ bindings are a layer
built directly on top of the GA C bindings. GA++ provides new names for the C bindings of GA
functions (For example, GA_Add_patch() is renamed as addPatch()).

8.2 GA++ Classes

All GA classes (GAServices, GlobalArray) are declared within the scope of GA namespace.

Namespace issue: Although namespace is part of ANSI C++ standard, not all C++ compilers support
namespaces (A non-instantiable GA class is provided for implementations using compilers without
namespace).
Note: define the variable _GA_USENAMESPACE_ as 0 in ga++.h if your compiler doesnot support
namespaces.

 namespace GA {
 class GAServices;
 class GlobalArray;
 };

Current implementation has no derived classes (no (virtual) inheritance), templates or exception
handling. Eventually, more object oriented functionalities will be added, and standard library facilities
will be used without affecting the performance.

8.3 Initialization and Termination:

GA namespace has the following static functions for initialization and termination of Global Arrays.

GA::Initialize():

10/21/2003http://www.emsl.pnl.gov/docs/global/um/ga++.html

Initialize Global Arrays, allocates and initializes internal data structures in Global Arrays. This is a
collective operation.

GA::Terminate():
Delete all active arrays and destroy internal data structures. This is a collective operation.

 namespace GA {
 _GA_STATIC_ void Initialize(int argc, char *argv[], size_t limit = 0);
 _GA_STATIC_ void Initialize(int argc, char *argv[], unsigned long heapSize, unsigned long
stackSize, int type, size_t limit = 0);
 _GA_STATIC_ void Terminate();
 };

Example:
 #include <iostream.h>
 #include "ga++.h"

 int
 main(int argc, char **argv) {
 GA::Initialize(argc, argv, 0);
 cout << "Hello World\n";
 GA::Terminate();
 }

8.4 GAServices:

 GAServices class has member functions that does all the global operations (non-array operations) like
Process Information (number of processes, process id, ..), Inter-process Synchronization (sync, lock,
broadcast, reduce,..), etc,.

SERVICES Object:
 GA namespace has a global "SERVICES" object (of type "GAServices"), which can be used to
invoke the non-array operations. To call the functions (for example, sync()), we invoke them on this
SERVICES object (for example, GA::SERVICES.sync()). As this object is in the global address space,
the functions can be invoked from anywhere inside the program (provided the ga++.h is included in that
file/program).

8.5 Global Array:

GlobalArray class has member functions that perform:

� Array operations
� One-sided (get/put),
� Collective array operations,
� Utility operations, etc,.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/ga++.html

Mirrored Arrays
9.1 Overview

Mirrored arrays use a hybrid approach to replicate data across cluster nodes and distribute data within
each node. It uses shared memory for caching latency sensitive distributed data structures on Symmetric
Multi-Processor nodes of clusters connected with commodity networks. The user is responsible for
managing consistency of the data cached within the mirrored arrays. Instead of applying mirroring to all
distributed arrays, the user can decide, depending on the nature of the algorithm and the communication
requirements (number and size of messages), which arrays can or should use mirroring and which
should be left fully distributed and accessed without the shared memory cache.

Figure: Example of a 2-dimensional array fully distributed, SMP mirrored, and replicated on two 4-way
SMP cluster nodes.

This hybrid approach is particularly useful for problems where it is important to solve a moderate sized
problem many times, such as an ab initio molecular dynamics simulation of a moderate size molecule. A
single calculation of the energy and forces that can be run in a few minutes may be suitable for a
geometry optimization, where a few tens of calculations are required, but is still too long for a molecular
dynamics trajectory, which can require tens of thousands of separate evaluations. For these problems, it
is still important to push scalability to the point where single energy and force calculations can be
performed on the order of seconds. Similar concerns exist for problems involving Monte Carlo sampling
or sensitivity analysis where it is important to run calculations quickly so that many samples can be
taken.

Mirrored arrays differ from traditional replicated data schemes in two ways. First, mirrored arrays can
be used in conjunction with distributed data and there are simple operations that support conversion
back and forth from mirrored to distributed arrays. This allows developers maximum flexibility in
incorporating mirrored arrays into their algorithms. Second, mirrored arrays are distributed within an
SMP node (see the above figure). For systems with a large number of processors per node, e.g., 32 in the

10/21/2003http://www.emsl.pnl.gov/docs/global/um/mirrored.html

current generation IBM SP, this can result in significant distribution of the data. Even for systems with
only 2 nodes per processor, this will result in an immediate savings of 50% over a conventional
replicated data scheme.

The disadvantage of using mirrored arrays is that problems are limited in size by what can fit onto a
single SMP node. This can be partially offset by the fact that almost all array operations can be
supported on both mirrored and distributed arrays, so that it is easy to develop code that can switch
between using mirrored arrays and conventional distributed arrays, depending on problem size and the
number of available processors.

9.2 Mirrored Array Operations

 Fortran integer ga_mirror_config()
 C int GA_Mirror_config()
 C++ int GA::GAServices::mirrorConfig()

This function returns a handle to the mirrored processor list, which can then be used to create a mirrored
global array using one of the NGA_Create_*_config calls.

 Fortran integer ga_merge_mirrored(g_a)
 C int GA_Merge_mirrored(int g_a)
 C++ int GA::GlobalArray::mergeMirrored()

This subroutine merges mirrored arrays by adding the contents of each array across nodes. The result is
that the each mirrored copy of the array represented by g_a is the sum of the individual arrays before the
merge operation. After the merge, all mirrored arrays are equal. This is a collective operation.

 Fortran integer nga_merge_distr_patch(g_a, alo, ahi, g_b, blo, bhi)
 C int NGA_Merge_distr_patch(int g_a, int alo[], int ahi[], int g_b, int
blo[], int bhi[])
 C++ int GA::GlobalArray::mergeDistrPatch(int alo[], int ahi[], int g_b, int
blo[], int bhi[])

This function merges all copies of a patch of a mirrored array (g_a) into a patch in a distributed array
(g_b). This is same as GA_merge_mirrored, except, this function is operated on a patch rather than the
whole array. This is a collective operation.

 Fortran integer ga_is_mirrored(g_a)
 C int GA_Is_mirrored(int g_a)
 C++ int GA::GlobalArray::isMirrored()

This subroutine checks if the array is mirrored array or not. Returns 1 if it is a mirrored array, else
returns 0. This is a local operation.

10/21/2003http://www.emsl.pnl.gov/docs/global/um/mirrored.html

