
This paper proposes using shared memory for caching
latency sensitive distributed data structures on
Symmetric Multi-Processor nodes of clusters connected
with commodity networks. Shared memory mirroring is
a hybrid approach that replicates data across cluster
nodes and distributes data within each node. The user is
responsible for managing consistency of the data
cached within the mirrored data structures. The method
is shown to be very effective in improving the
performance of a real scientific application on clusters
equipped with Ethernet, Myrinet, or Quadrics networks.

1. Introduction
There are multiple tradeoffs in building cost-effective
clusters based on commodity components. Among the
most fundamental decisions is selection of the network.
Faster networks such as Myrinet, Quadrics, SCI, or
Infiniband are substantially more costly than Ethernet
(100- or even 1000 Mbit/s). Given a fixed budget, if
Ethernet is selected more cluster nodes can be
purchased, but the efficiency of applications will be
compromised due to reduced bandwidth and increased
latency in interprocessor communication. From the
cost/performance perspective, analytical models have
been proposed to provide guidance for cluster
procurements [1]. For some applications, the
performance degradations experienced on slower
networks can be reduced using proven techniques for
hiding latency, aggregating small messages, or reducing
the volume of data communicated across the network
(e.g., through data replication).

Overlapping communication and computation with the
support of nonblocking communication is one of the
most commonly used techniques for latency hiding at
the application level. However, its effectiveness
depends on the ability of the underlying communication
layer (e.g., MPI) to make progress in the absence of
explicit communication calls in the purely
computational phase of the program execution [2,3].
Moreover, many algorithms offer only limited or no
opportunities for issuing nonblocking communication
calls if the computed data is immediately required on
other processors (e.g., computing search direction
vectors in the conjugate gradient method). The
effectiveness of yet another technique for reducing
sensitivity to high network latency, message

aggregation, is also limited to certain classes of
algorithms where data is communicated by small
messages that are not immediately required by the
receiver.

In our previous work [4,5], mirroring of data structures
was introduced as a mechanism for reducing sensitivity
to the communication delays in grid computing
environments. In that approach, all distributed data
structures used by applications were effectively
replicated on each of the systems connected to the wide
area network, and distributed across the processors
inside the system. All message passing was confined to
each individual machine. The user was responsible for
managing inconsistent data, primarily using a merge
operation that could combine the data across the wide
area network using the TCP/IP sockets. Although
shown effective for some applications in the grid
environments, to our best knowledge this technique has
not been used beyond the proof of concept
demonstration. Although the original mirroring
approach is relevant to clusters, it would lead to
inefficient use of resources (memory and network)
when used unmodified in that environment.

In the current paper, we propose mirroring of only
selected latency sensitive data structures as a latency
hiding mechanism for clusters based on inexpensive
commodity networks. The current paper describes an
implementation and use of mirroring as a shared
memory cache, shared between processors on SMP
nodes. Shared memory is the fastest communication
protocol available on clusters and reduces
communication latency by one or even several orders of
magnitude. Instead of applying mirroring to all
distributed arrays, as in [4], the user can decide,
depending on the nature of the algorithm and the
communication requirements (number and size of
messages), which arrays can or should use mirroring
and which should be left fully distributed and accessed
without the shared memory cache. The set of operations
on mirrored arrays has been extended to provide
increased opportunities for application optimization.
Instead of using socket communication in merging
arrays between supercomputers connected to a wide-
area network, the native communication protocols can
be used for all the communication and there is no

Shared Memory Mirroring for Reducing Communication Overhead on
Commodity Networks

 Bruce Palmer Jarek Nieplocha Edoardo Aprà

 Computational Sciences & Mathematics Environmental Molecular Sciences Laboratory

Pacific Northwest National Laboratory, Richland, WA 99352, USA

negative impact on performance of parts of the
application that does not involve mirroring. Using the
high performance network and communication
protocols is important as the latency hiding techniques
traditionally require increased network bandwidth [7].
Shared memory mirroring could be considered as one of
the techniques for explicit management of memory
hierarchy at the application level [6] and is also related
to latency hiding techniques used in shared memory
microprocessors such as software-controlled prefetching
[8,9,10], bulk transfers [10], or weaker consistency
models e.g., [11]. The primary difference is that shared
memory mirroring is performed by the user in context
of specific distributed data structures in the SMP cluster
environments.

 The idea of mirroring latency sensitive data structures
is general and it can be used in applications based on
MPI that rely on distributed arrays. However, here the
benefit of this technique is shown in context of the
Global Array (GA) toolkit [12] that supports an
extensive set of operations on dense distributed arrays.
These also include one-sided put/get communication. In
addition to applications in other areas, GA has become
de facto standard programming interface for quantum
computational chemistry [20], most major scalable
parallel packages either use it as the communication
interface (NWChem, Molpro, Molcas, QChem,
COLUMBUS, GAMESS-UK) or emulate a subset of its
functionality (GAMESS-US).

The paper makes several contributions to the field. It
discusses algorithmic and performance benefits and
limitations of mirroring. It describes design issues
involved in efficient implementation of this technique
on SMP clusters. It shows that mirroring can greatly
improve performance of a real scientific application on
a cluster employing any of the three common networks:
Ethernet, Myrinet, and Quadrics. For the density
functional application investigated here, mirroring
improved application performance by 72.6% on the 48
Itanium-2 processors connected with Ethernet.

This paper is organized as follows. Section 2 describes
mirroring. Section 3 discusses design tradeoffs and
implementation of this technique on the SMP clusters.
Section 4 describes experimental results for
communication operations on mirrored arrays, matrix
multiplication benchmark, and a real scientific
application. Finally, summary and conclusions are
presented in Section 5.

2. Approach, Advantages and Limitations
Mirroring of latency sensitive data structures is meant to
extend the range of scalability of midsized problems to
larger numbers of processors when running on a cluster
of SMP nodes with commodity networks. The goal is to
achieve optimum per processor performance, even for
large number of processors, by replicating data across

SMP nodes but distributing it within the SMP node.
This hybrid approach is particularly useful for problems
where it is important to solve a moderate sized problem
many times, such as an ab initio molecular dynamics
simulation of a moderate size molecule. A single
calculation of the energy and forces that can be run in a
few minutes may be suitable for a geometry
optimization, where a few tens of calculations are
required, but is still too long for a molecular dynamics
trajectory, which can require tens of thousands of
separate evaluations. For these problems, it is still
important to push scalability to the point where single
energy and force calculations can be performed on the
order of seconds. Similar concerns exist for problems
involving Monte Carlo sampling or sensitivity analysis
where it is important to run calculations quickly so that
many samples can be taken.

Many modern parallel computer configurations consist
of clusters of SMP nodes, with individual nodes
containing multiple processors. Communication within
the SMP node can be achieved using shared memory,
which is the fastest interprocessor communication
mechanism available, while communication between
nodes involves a network, which is typically (much)
slower. In the case of a Beowulf cluster built with an
Ethernet network, the difference between intranode and
internode communication can vary by orders of
magnitude. The goal of mirroring is to minimize the
communication overhead that can occur in such systems
by distributing copies of an array on each SMP node.
Communication overhead is limited by confining
operations within an SMP node to as great an extent as
possible and then recovering the full result using a
“merge” operation to combine data from individual
arrays on each SMP node. The strategy is to use
memory to offset communication losses and is
particularly aimed at hardware configurations where
there is fast communication within nodes but slow
communication between nodes. Note, the merge
operation is not required in all computations involving
mirrored data. In principle, it is needed if the cached
data is modified and the modification needs to become
globally available.

Mirrored arrays differ from traditional replicated data
schemes in two ways. First, mirrored arrays can be used
in conjunction with distributed data and there are simple
operations that support conversion back and forth from
mirrored to distributed arrays. This allows developers
maximum flexibility in incorporating mirrored arrays
into their algorithms. Second, mirrored arrays are
distributed within an SMP node (Figure 1). For systems
with a large number of processors per node, e.g., 32 in
the current generation IBM SP, this can result in
significant distribution of the data. Even for systems
with only 2 nodes per processor, this will result in an
immediate savings of 50% over a conventional

replicated data scheme. This can be partially offset by
the fact that almost all array operations can be supported
on both mirrored and distributed arrays, so that it is easy
to develop code that can switch between using mirrored
arrays and conventional distributed arrays, depending
on problem size and the number of available processors.

3. Interfaces and Implementation
There are three significant components to implementing
mirrored arrays. The first is the processor list that
contains the mirrored array configuration, the second is
incorporating recognition for this special type of array
into a subset of functions that operate on arrays, and
third is the addition of functions for merging mirrored
arrays and an array copy that allows transfer of data
between distributed and mirrored arrays. In our case,
once this small group of functions has been adapted to
properly deal with mirrored arrays, most of the
remaining Global Array functions work with little or, in
most cases, no modification. The processor list data
structure is associated with every array, whether
mirrored or not, and contains information about the
mirrored array configuration. The most important
elements of this data structure are maps between the
local processor index on a node and the global processor
index for the entire set of nodes. Currently only two
processor lists are supported, the default processor list
corresponding to a standard non-mirrored configuration
of an array distributed across all processors in the
system and the mirrored configuration containing a
distributed copy of the array on each SMP node.

Most of the remaining work involves extending the
routines that create distributed arrays to account for the
processor list, modifying some core functions to take
account of the array mirroring, when it is present, and

the creation of a merge operation that combines the
contents of all mirrored arrays so that each copy is
identical. The create functions must be modified so that
the array is decomposed in blocks based on the number
of processors on the SMP node, instead of the total
number of processors for the job. The create functions
also assign a processor list to each array. For the Global
Arrays toolkit, the core task in implementing mirrored
arrays was modifying all functions that locate data, or
pointers to data, along with the basic communication
operations. Examples of the higher level data location
routines that need to be modified are functions that
return the set of array indices representing the block of
array data that is held by a particular processor and the
call that returns the processor(s) that own either a
particular piece of data or a block of data. For mirrored
arrays, these functions only return processors that are on
the same SMP node, even though the data is duplicated
over many nodes. There are also functions that return
pointers to the location in memory where a particular
chunk of data begins. Once the modifications to these
data location functions are complete, the
communication operations work correctly on mirrored
data.

To convert between mirrored and distributed arrays, the
copy function was extended to handle the situation were
one array is mirrored and the other is distributed. The
copy operation is unambiguous if copying from a
distributed array to a mirrored array, but copying from a
mirrored array to a distributed array is only well-defined
if all copies of the mirrored array are the same. It is up
to the programmer to ensure that the mirrored arrays are
all the same in this case. The copy from a distributed
array to a mirrored array is accomplished by first
zeroing out the mirrored array and then copying the

Figure 1: A two-dimensional array fully distributed, SMP mirrored, and replicated on two 4-way SMP cluster nodes

distributed SMP mirrored replicated

portion of the distributed array held on the SMP node to
the corresponding portion of the mirrored array on the
same node using shared memory copies. The full
mirrored array can be recovered by then performing a
merge operation. The copy from a mirrored array to a
distributed array can be done very quickly, since only
shared memory copies are required with no
communication. Most of the other basic functions in the
Global Array toolkit functioned for mirrored arrays
without any alteration.

 The only completely new functionality is the merge
function, which does a sum of all instances of the
mirrored array across all SMP nodes. This can be used
to accumulate portions of a calculation that has been
distributed across nodes into a single array. The merge
operation uses the fact that if each node has the same
number of processors, the data for each array will be
laid out in the same way relative to the origin of the
data. Since the data is distributed within each SMP
node, there may be gaps in the data between the
portions corresponding to the memory allocation of the
array associated with each processor, but these gaps are
reproduced on each SMP node. Furthermore, unless
ghost cells are present the gaps typically are the size of

only a few array elements and are guaranteed not to
contain any useful data. Because of this, the merge
operation can be performed using the following
sequence of operations:

Locate the origin of the data in memory on each SMP
node.

Find the total length of the region containing the array
data on each SMP node (including gaps).

Zero out the data in the gaps (This is to prevent
accidental overflows due to uninitialized data in the
gaps. The gaps do not contain useful data, so zeroing
them is benign.)

Perform a standard global sum across SMP nodes with
only one process per node participating in the operation
explicitly (in O(log(N)) rather than O(log(P)) time,
where N is the number of cluster nodes and P is the
number of processors) .

This method can make use of the heavy optimization
associated with global sums and results in an operation
that scales like the logarithm of the number of SMP
nodes. This is illustrated schematically in Figure 2. For
the case in which the number of processors on each
SMP node are not equal (expected to be a rarity in

Node 0 Node 1

Shared Memory Shared Memory

Zero Out Gaps

Global Sum

(a)

(b)

(c)

Gaps

Figure 2. Schematic diagram of merge operation. (a) Origin of data in shared memory is located, size
and location of gaps is determined, and total length of data calculated. (b) Data in gaps is zeroed out.
(c) global sum of data across nodes is performed.

actual practice and only included to protect against
unnecessary failures) the merge operation is
implemented by creating a temporary distributed array.
Each processor then takes the portion of the mirrored
array that it holds locally and uses a put-accumulate
(atomic reduction) operation to accumulate it into the
appropriate part of the distributed array. After the
accumulate operations are completed, each processor
then grabs the portion of the temporary array
corresponding to the locally held chunk and copies back
to local memory. The temporary array is then destroyed
and each copy of the mirrored array contains the merged
data.

The interface for this operation is fairly simple and
involves the extension/addition of only a few functions.
The array creation functions were all extended to
incorporate an additional parameter representing the
processor list handle. Some additional functions were
provided that return the handles for the mirrored
processor list and the processor list for a standard
distributed array. The type of array created then
depends on the handle that is provided in the array
creation call. The only other addition is the merge call
that sums all copies of the mirrored array together.

4. Experimental Evaluation
The SMP mirroring was evaluated using
microbenchmarks to measure communication
performance, a simple matrix multiplication kernel, and
a computational chemistry application. The primary
platform used in these experiments was a Linux cluster,
based on HP RX2600 SMP nodes, each employing two
1GHz Itanium-2 processors. Three networks were
available: 100Mbit/s Ethernet, Myrinet-2000, and
Quadrics Elan-3. In addition, the scientific application
was also tested on a 4-way Alphaserver cluster with the
Quadrics Elan-3 network.

Communication Performance
We measured performance of basic one-sided
communication operations on distributed and mirrored
arrays. The table below presents the performance for the
get operation. With mirroring the performance is
independent of the network used. The get operation
reduces to the shared memory copy (note that when
comparing to the copy bandwidth reported by the
STREAM benchmark for the HP RX2600 a factor 2
multiplier should be used). The latency corresponds to
the overhead in the GA library that involves translation
of array indices to the processor and memory location.
Regarding the distributed case, the results correspond to
performance of the elan_get operation (note that
compatibility issues between the HP ZX1 chipset used
in the RX2600 and the Elan-3 PCI card reduce
bandwidth over what that card delivers on many IA32
systems). For Ethernet and Myrinet, the results in the

distributed case correspond to the performance of the
ARMCI library that implements the missing get
operation functionality using the client server approach
[13,14].

Table 1:Performance of get operation

 Ethernet Myrinet Quadrics

distributed 144 30.8 12 latency
[µs]

mirrored 3.58

distributed 11.7 219 225 bandwidth
[MB/s]

mirrored 1560

In figures 3-5, performance of the merge operation on
Ethernet, Myrinet, and Quadrics is presented as a
function of the number of processors and data size. As
expected, for fixed message size the cost grows
logarithmically as function of the number of processors.
Moreover, the performance is directly related to the
speed of the network (Ethernet being the slowest among
three).

Matrix Multiplication Example
A basic test of the mirrored arrays is to see if they can
improve matrix multiplies on a cluster with a relatively
slow network. A typical matrix multiply across many
nodes will require on the order of P0.5 separate messages
per node, while a mirrored matrix multiply requires on
the order of logP messages per node. If communication
is slow relative to computation and memory is not a
problem, it is expected that a considerable improvement
in scalability can be achieved by replacing distributed
matrix multiplies with mirrored matrix multiplies. If A,
B, and C are mirrored arrays representing three
matrices, then the matrix multiplication C = A·B can
accomplished by dividing C between the SMP nodes
such that each SMP node has an approximately equal

0.001

0.01

0.1

1

10

0 8 16 24 32 40 48

processors

tim
e

[s
]

8

128

1024

16384

131072

Figure 3: Cost of the merge operation for different
message size on Ethernet

share and then doing the multiplications of the
submatrices of A and B that yield the corresponding
patch of C. Since A and B are duplicated on all the SMP
nodes, this can be done with no communication. When
the calculation of the local portion of C is completed on
each node, the full matrix can be recovered by
performing the merge operation. Note that within each
node, the multiplication of the submatrices of A and B
is distributed.

Results from tests of matrix multiplication of two
square 1025x1025 matrices are shown in Figures 6-8 for
the Ethernet, Myrinet, and Quadrics network,
respectively. For the tests shown here, both mirrored
and distributed matrix multiplies involve the same
amount of computation, so differences in timings are
mainly due to different communication volumes for the
two algorithms. Results for the Ethernet network
(Figure 6) show that for low numbers of processors, the
mirrored arrays substantially outperform the distributed
matrix multiply, although for this network neither
system exhibits scaling. Given the characteristics of the
matrix multiplication and the size of matrices used, it
was not expected that 100Mbit/s Ethernet network
would be sufficient to satisfy communication needs for
a system with two 4GFLOP/s processors on each cluster
node and thus achieve scaling.

On Ethernet, for larger numbers of processors, the
performance of the distributed matrix multiply turns
over and begins to decrease. By the time the system size
reaches 32 processors both methods are about equal.
The behavior of the distributed matrix multiply can be
explained by noting that initially, there is a rapid
increase in the number of large messages that must be
sent so time required for the multiply increases rapidly.
The increase in the number of message is offset at larger
numbers of processors by the fact that the length of the

messages is decreasing so the time required per message
is going down, which is enough to offset the increase in
the number of messages. The mirrored matrix multiply
shows a monotonic increase in the amount of time
required to perform the calculation and this is all due to
the logarithmic increase in the amount of time required
to perform the merge operation. Unlike the distributed
matrix multiply, the size of the messages in the merge
operation remains fixed with increasing number of
processors. Furthermore, it is clear that for a slow
network such as Ethernet, almost all the time required
for the matrix multiply is consumed by communication.
These results indicate that the mirrored array algorithm
may substantially improve performance on low to
intermediate numbers of processors. Clearly, there is no
point in using larger numbers of processors for the
matrix multiply alone, but if it is imbedded in a code
where it is a significant bottleneck, then using the
mirrored arrays would improve performance over an
intermediate range of processors.

The results for the Myrinet and Quadrics networks also
show that the mirrored matrix multiply outperforms the
distributed algorithm for low to intermediate numbers of
processors. Both of these networks are substantially
faster than Ethernet, so these results exhibit scaling. For
Myrinet, the improvement of the mirrored algorithm is
only marginally better than the distributed arrays for
low numbers of processors and at 16 processors the two
algorithms are substantially the same. At 32 processors,
there appears to be another crossover in performance.
Surprisingly, for Quadrics, which is the fastest network
investigated, there is again a significant improvement in
performance of the mirrored algorithm compared to the
distributed algorithm. For this network, the mirrored
array is faster even for 32 processors, which was the
crossover point for the other two networks. These

0.0001

0.001

0.01

0.1

1

0 8 16 24 32 40 48

processors

tim
e[

s]

8

128

1024

16384

131072

Figure 4: Cost of the merge operation for different
message size on Myrinet

0.0001

0.001

0.01

0.1

1

0 8 16 24 32 40 48

processors

tim
e

[s
]

8
128
1024
16384
131072

Figure 5: Cost of the merge operation for different
message size on Quadrics

results reinforce the conclusions reached for the
Ethernet network, that the use of mirrored arrays can
improve performance for intermediate numbers of
processors.

Scientific Application
In recent years, Density-Functional Theory (DFT) has
become the most widely used electronic-structure
method for calculating the properties of molecules. The
mirrored arrays functionality has been implemented in
the Gaussian function-based DFT module of NWChem
[15,16]. More precisely, it has been implemented in the
evaluation of the matrix representation of Exchange-
Correlation (XC) potential on a numerical grid [17,18].
Prior to the current work, this quantity was evaluated
using a distributed data approach, where the main arrays
were distributed among the processing elements by
using the GA library.

This algorithm is very similar to the Hartree-Fock
(a.k.a. SCF) algorithm, since both methods are
characterized by the utilization of two main 2-
dimensional arrays: input density matrix (D) and output
Kohn-Sham (K) matrix. The major steps of this
algorithm be summarized as follows:

1) Generate Density Matrix from a parallel matrix
multiply into a distributed global array g_DM

2) Read Density Matrix block from the array g_DM into
local quantity Dkl using the get operation

3) Evaluate the density function ρ on the grid points xq
by multiplying the density matrix with pairs of basis
functions χ

ρ(xq) = ∑kl Dkl χk(xq) χl(xq)

4) Evaluate the Exchange Correlation Potential
Vxc[ρ(xq)] on the grid points xq

5) Numerical integration combining Vxc[ρ(xq)] with the
basis functions and the grid weights wq to get the Kij
matrix element

Kij = ∑q wq χi(xq) V
xc[ρ(xq)] χj(xq)

6) Write the local quantity into the array g_K using the
accumulate (atomic reduction) operation.

Steps 1), 2) and 6) involve communication, whereas
steps 3) to 5) can all be executed locally.

The arrays g_DM and g_K are distributed by atomic
blocks (as described in [19]), thereby reducing the
amount of communication. However, the resulting
algorithm is still sensitive to the communication
bandwidth. The transformation of the quantities into
mirrored arrays has allowed us to hide the
communication latency occurring in steps 2) and 6).
This process requires the following modifications. In
step 1) the distributed array g_DM is now copied into a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20 24 28 32
number of processors

tim
e

[s
]

mirrored

distributed

merge

Figure 8: Matrix multiplication on Quadrics using
mirrored and distributed approach. In addition, time
spent in the merge operation is shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20 24 28 32
number of processors

tim
e

[s
]

mirrored

distributed

merge

Figure 7: Matrix Multiplication on Myrinet using
mirrored and distributed approach. In addition, time
spent in the merge operation is shown.

0

1

2

3

4

5

0 4 8 12 16 20 24 28 32

number of processors

tim
e

[s
]

mirrored

distributed
merge

Figure 6: Matrix Multiplication on Ethernet using
mirrored and distributed approach. In addition, time
spent in the merge operation is shown.

mirrored array, eliminating the inter-node
communications previously needed in step 2). g_K is
now a mirrored array, therefore no inter-node
communications are used in the accumulate operation
(equivalent to daxpy within the SMP node), but after
merging changes to g_K, a copy operation is needed to
move the data into a distributed array to use it as input
for the rest of code, which uses distributed arrays.

These modifications allowed us to achieve substantial
performance improvements, as shown by the benchmark
results reported in figures 10 and 11. Wall clock timings
for the matrix evaluation of the XC potential (step 1 to
6) of a zeolite fragment (SiOSi3) are reported as a
function of the number of processors. We collected and
analyzed trace data for interprocessor communication
for that calculation. Figure 9 illustrates the profile of
communication operations in steps 2) and 6) for that
particular molecule. The profile indicates the presence
of a broad distribution of messages of all sizes in these
two steps and that increases in efficiency may be
obtained by replacing these communications with
shared memory copies using mirrored arrays. By
looking at trace data we found that the communication
operations in step 6) did not exhibit any particular
locality pattern. Figure 10 shows results from runs on
the Ethernet, Myrinet and Elan networks. The
distributed data approach is responsible for the large gap
in performance between slower (Ethernet) and faster
(Elan and Myrinet) networks (top three curves in the
plot). The mirroring of latency sensitive arrays helped
reduce performance gap between slow and fast
networks. It should be noted when comparing results
shown in Figures 10 and 11, there is a change in the
computational platforms since instead of 2-way SMP
system, we are now dealing with a 4-way SMP; this
hardware configuration shows similar benefits from the
mirrored arrays algorithm as in figure 10.

Figure 10: DFT SiOSi3 benchmark using mirrored and
fully distributed approach on a 1GHZ Itanium2 dual
processor system with three different interconnects:
Ethernet, Myrinet, or Elan-3 (Quadrics)

Figure 11: DFT SiOSi3 benchmark on a 1GHZ EV68
Alpha 4-way system using the Elan-3 (Quadrics) and
Ethernet interconnects.

6. Conclusions
The results presented in this paper indicate that
mirroring can be used to substantially improve
performance for some algorithms running on clusters of
SMP nodes. Although originally targeted for SMP
nodes connected by relatively slow networks the timing
data obtained for the matrix multiply and DFT
calculations suggest that significant performance gains
can be achieved even when the network is fast, provided
enough memory is available to use mirroring.

The timing data also indicate that the merge operation
remains a significant bottleneck to achieving very high
levels of performance. The current merge operation is
based on a global sum over all the mirrored data and for
general data distributions within the mirrored arrays this
may be the optimal method for merging the data.
However, this has the disadvantage that it is moving all
the data contained in the mirrored arrays at each step in

0

1000

2000

3000

4000

5000

6000

8 24 48 72 14
4

20
0

28
8

60
0

76
0

18
00

22
80

28
88

bytes

n
u

m
b

er
 o

f
o

p
er

at
io

n
s

get
acc

Figure 9: Communication profile in the benchmark
illustrating the number operations for specific message
size in a four processors' run.

the global sum, which can be wasteful in cases such as
the matrix multiply. For this case, most of the data in
the product matrix before the merge is initialized to zero
and additional savings in time could be achieved only
moving nonzero data. The same algorithm could also be
used to improve the performance of the copy from
distributed to mirrored arrays, which contains a similar
embedded merge operation. Future work will focus on
developing 1) more sophisticated variations of the
merge operation that can exploit these potential savings
and 2) developing a more storage efficient scheme for
caching the data.

7. Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL). PNNL is operated for
DOE by Battelle. This work was supported by the
Environmental Molecular Sciences Laboratory and the
Center for Programming Models for Scalable Parallel
Computing sponsored by the MICS/ASCR program in
the DOE Office of Science. This work was partially
supported by National Computational Science Alliance
under grant CH6MR1P and utilized the PSC
AlphaServer cluster. The authors are indebted to Vinod
Tipparaju and Manoj Krishnan for useful conversations.

References
1. Xing Du, Xiaodong Zhang, The impact of
memory hierarchies on cluster computing, Proc. Joint
13th IPPS and 10th SPDP, 1999.
2. James B. White and Steve W. Bova. Where’s the
overlap? Overlapping communication and computation
in several popular MPI implementations. In Proc. 3rd
MPI Developers’ and Users’ Conference, March 1999.
3. Bill Lawry, Riley Wilson, Arthur B. Maccabe, and
Ron Brightwell, COMB: A Portable Benchmark Suite
for Assessing MPI Overlap, IEEE Cluster 2002.
4. J. Nieplocha and R.J. Harrison, Shared-memory
programming in metacomputing environments: The
Global Array approach, The Journal of
Supercomputing, 11:119-136, 1997.
5. J. Nieplocha, R.J. Harrison, “Shared-memory
NUMA programming on I-WAY”, Proc. of IEEE High
Performance Distributed Computing Symposium
HPDC-5, IEEE Computer Society Press, 1996.
6. J. Nieplocha, R.J. Harrison, and I. Foster,
“Explicit Management of Memory Hierarchy”, in
“Advances in High Performance Computing”, Eds. J.
Kowalik, L. Grandinetti, and M. Vajtersic, Kluwer
Academic, 1997.
7. S. Kim, AV Veidenbaum, On interaction between
interconnection network design and latency hiding
techniques in multiprocessors, The Journal of
Supercomputing, 16 (3): 197-216, 2000.
8. T. Mowry, A. Gupta, Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory

Multiprocessors, Journal of Parallel and Distributed
Computing, vol 12, 2, 1991.
9. Z. Zhang, J. Torrellas, Speeding up Irregular
Applications in Shared-Memory Multiprocessors:
Memory Binding and Group Prefetching, 22nd Intern.
Symposium on Computer Architecture, 1995.
10. Roh, B. H. Seong, D. Park, Hiding latency
through bulk transfer and prefetching in distributed
shared memory multiprocessors, Proc. 4th High
Performance Computing Asia-Pacific Region, 2000.
11. K. Gharachorloo, D. Lenoski, J. Laudon, P.
Gibbons, A. Gupta, and J. Hennessy. Memory
consistency and event ordering in scalable shared-
memory multiprocessors. Proc. 17th Annual Intern.
Symposium on Computer Architecture, 1990.
12. J. Nieplocha, R.J. Harrison, R.J. Littlefield,
Global Arrays: A Nonuniform Memory Access
Programming Model for High-Performance computers,
The Journal of Supercomputing, vol 10, 1996.
13. J. Nieplocha, V. Tipparaju, A. Saify, D. Panda,
Protocols and Strategies for Optimizing Remote
Memory Operations on Clusters, Proc. Communication
Architecture for Clusters Workshop of IPDPS’02. 2002.
14. J. Nieplocha, V. Tipparaju, J. Ju, E. Aprà, One-
sided communication on Myrinet, Cluster Computing,
6, 115-124, 2003.
15. R.A. Kendall, E. Aprà, D.E. Bernholdt, E.J.
Bylaska, M. Dupuis, G.I. Fann, R.J. Harrison, J.L. Ju,
J.A. Nichols, J. Nieplocha, T.P. Straatsma, T.L.Windus,
A.T.Wong, High performance computational chemistry:
An overview of NWChem a distributed parallel
application, Comput. Phys. Commun. 128 (2000) 260.
16. D.E. Bernholdt, E. Aprà, H.A. Früchtl, M.F.
Guest, R.J. Harrison, R.A. Kendall, R.A. Kutteh, X.
Long, J.B. Nicholas, J.A. Nichols,H.L. Taylor, A.T.
Wong, G.I. Fann, R.J. Littlefield, J. Nieplocha, Parallel
Computational Chemistry Made Easier: The
Development of NWChem, Int. J. Quantum Chem.
Symposium 29 (1995) 475.
17. A.D. Becke, A Multicenter Numerical Integration
Scheme for Polyatomic Molecules, J. Chem. Phys. 88
(1988) 1053.
18. B. G. Johnson, P. M. W. Gill and J. A. Pople, The
Performance of a Family of Density-Functional
Methods, J. Chem. Phys. 98 (1993) 5612.
19. R.J. Harrison, M.F. Guest, R.A. Kendall, D.E.
Bernholdt, A.T. Wong, M. Stave, J.L. Anchell, A.C.
Hess , R.J. Littlefield, G.I. Fann, J. Nieplocha, G.S.
Thomas, D. Elwood, J.L. Tilson, R.L. Shepard, A.F.
Wagner, I.T. Foster , E. Lusk , R. Stevens, High
Performance Computational Chemistry(II): A Scalable
SCF program, J. Comp. Chem. 17, 124 (1993).
20. T. Steinke, Tools for parallel quantum chemistry
software, in Modern Methods and Algorithms in
Quantum Chemistry, J. Grotendorst (ed.), John von
Neumann Insitutute for Computing, Jülich, Vol 1. 2000.

