
This paper proposes using shared memory for caching 
latency sensitive distributed data structures on 
Symmetric Multi-Processor nodes of clusters connected 
with commodity networks. Shared memory mirroring is 
a hybrid approach that replicates data across cluster 
nodes and distributes data within each node. The user is 
responsible for managing consistency of the data 
cached within the mirrored data structures. The method 
is shown to be very effective in improving the 
performance of a real scientific application on clusters 
equipped with Ethernet, Myrinet, or Quadrics networks. 

1. Introduction 
There are multiple tradeoffs in building cost-effective 
clusters based on commodity components. Among the 
most fundamental decisions is selection of the network. 
Faster networks such as Myrinet, Quadrics, SCI, or 
Infiniband are substantially more costly than Ethernet 
(100- or even 1000 Mbit/s). Given a fixed budget, if 
Ethernet is selected more cluster nodes can be 
purchased, but the efficiency of applications will be 
compromised due to reduced bandwidth and increased 
latency in interprocessor communication. From the 
cost/performance perspective, analytical models have 
been proposed to provide guidance for cluster 
procurements [1]. For some applications, the 
performance degradations experienced on slower 
networks can be reduced using proven techniques for 
hiding latency, aggregating small messages, or reducing 
the volume of data communicated across the network 
(e.g., through data replication). 

Overlapping communication and computation with the 
support of nonblocking communication is one of the 
most commonly used techniques for latency hiding at 
the application level. However, its effectiveness 
depends on the ability of the underlying communication 
layer (e.g., MPI) to make progress in the absence of 
explicit communication calls in the purely 
computational phase of the program execution [2,3]. 
Moreover, many algorithms offer only limited or no 
opportunities for issuing nonblocking communication 
calls if the computed data is immediately required on 
other processors (e.g., computing search direction 
vectors in the conjugate gradient method). The 
effectiveness of yet another technique for reducing 
sensitivity to high network latency, message 

aggregation, is also limited to certain classes of 
algorithms where data is communicated by small 
messages that are not immediately required by the 
receiver.  

In our previous work [4,5], mirroring of data structures 
was introduced as a mechanism for reducing sensitivity 
to the communication delays in grid computing 
environments. In that approach, all distributed data 
structures used by applications were effectively 
replicated on each of the systems connected to the wide 
area network, and distributed across the processors 
inside the system. All message passing was confined to 
each individual machine. The user was responsible for 
managing inconsistent data, primarily using a merge 
operation that could combine the data across the wide 
area network using the TCP/IP sockets. Although 
shown effective for some applications in the grid 
environments, to our best knowledge this technique has 
not been used beyond the proof of concept 
demonstration. Although the original mirroring 
approach is relevant to clusters, it would lead to 
inefficient use of resources (memory and network) 
when used unmodified in that environment.   

In the current paper, we propose mirroring of only 
selected latency sensitive data structures as a latency 
hiding mechanism for clusters based on inexpensive 
commodity networks. The current paper describes an 
implementation and use of mirroring as a shared 
memory cache, shared between processors on SMP 
nodes. Shared memory is the fastest communication 
protocol available on clusters and reduces 
communication latency by one or even several orders of 
magnitude.  Instead of applying mirroring to all 
distributed arrays, as in [4], the user can decide, 
depending on the nature of the algorithm and the 
communication requirements (number and size of 
messages), which arrays can or should use mirroring 
and which should be left fully distributed and accessed 
without the shared memory cache. The set of operations 
on mirrored arrays has been extended to provide 
increased opportunities for application optimization. 
Instead of using socket communication in merging 
arrays between supercomputers connected to a wide-
area network, the native communication protocols can 
be used for all the communication and there is no 
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negative impact on performance of parts of the 
application that does not involve mirroring. Using the 
high performance network and communication 
protocols is important as the latency hiding techniques 
traditionally require increased network bandwidth [7]. 
Shared memory mirroring could be considered as one of 
the techniques for explicit management of memory 
hierarchy at the application level [6] and is also related 
to latency hiding techniques used in shared memory 
microprocessors such as software-controlled prefetching 
[8,9,10], bulk transfers [10], or weaker consistency 
models e.g., [11]. The primary difference is that shared 
memory mirroring is performed by the user in context 
of specific distributed data structures in the SMP cluster 
environments.   

 The idea of mirroring latency sensitive data structures 
is general and it can be used in applications based on 
MPI that rely on distributed arrays. However, here the 
benefit of this technique is shown in context of the 
Global Array (GA) toolkit [12] that supports an 
extensive set of operations on dense distributed arrays. 
These also include one-sided put/get communication. In 
addition to applications in other areas, GA has become 
de facto standard programming interface for quantum 
computational chemistry [20], most major scalable 
parallel packages either use it as the communication 
interface (NWChem, Molpro, Molcas, QChem, 
COLUMBUS, GAMESS-UK) or emulate a subset of its 
functionality (GAMESS-US).  

The paper makes several contributions to the field. It 
discusses algorithmic and performance benefits and 
limitations of mirroring. It describes design issues 
involved in efficient implementation of this technique 
on SMP clusters. It shows that mirroring can greatly 
improve performance of a real scientific application on 
a cluster employing any of the three common networks: 
Ethernet, Myrinet, and Quadrics. For the density 
functional application investigated here, mirroring 
improved application performance by 72.6% on the 48 
Itanium-2 processors connected with Ethernet. 

This paper is organized as follows. Section 2 describes 
mirroring. Section 3 discusses design tradeoffs and 
implementation of this technique on the SMP clusters. 
Section 4 describes experimental results for 
communication operations on mirrored arrays, matrix 
multiplication benchmark, and a real scientific 
application. Finally, summary and conclusions are 
presented in Section 5. 

2. Approach, Advantages and Limitations 
Mirroring of latency sensitive data structures is meant to 
extend the range of scalability of midsized problems to 
larger numbers of processors when running on a cluster 
of SMP nodes with commodity networks. The goal is to 
achieve optimum per processor performance, even for 
large number of processors, by replicating data across 

SMP nodes but distributing it within the SMP node. 
This hybrid approach is particularly useful for problems 
where it is important to solve a moderate sized problem 
many times, such as an ab initio molecular dynamics 
simulation of a moderate size molecule. A single 
calculation of the energy and forces that can be run in a 
few minutes may be suitable for a geometry 
optimization, where a few tens of calculations are 
required, but is still too long for a molecular dynamics 
trajectory, which can require tens of thousands of 
separate evaluations. For these problems, it is still 
important to push scalability to the point where single 
energy and force calculations can be performed on the 
order of seconds. Similar concerns exist for problems 
involving Monte Carlo sampling or sensitivity analysis 
where it is important to run calculations quickly so that 
many samples can be taken. 

Many modern parallel computer configurations consist 
of clusters of SMP nodes, with individual nodes 
containing multiple processors. Communication within 
the SMP node can be achieved using shared memory, 
which is the fastest interprocessor communication 
mechanism available, while communication between 
nodes involves a network, which is typically (much) 
slower. In the case of a Beowulf cluster built with an 
Ethernet network, the difference between intranode and 
internode communication can vary by orders of 
magnitude. The goal of mirroring is to minimize the 
communication overhead that can occur in such systems 
by distributing copies of an array on each SMP node. 
Communication overhead is limited by confining 
operations within an SMP node to as great an extent as 
possible and then recovering the full result using a 
“merge” operation to combine data from individual 
arrays on each SMP node. The strategy is to use 
memory to offset communication losses and is 
particularly aimed at hardware configurations where 
there is fast communication within nodes but slow 
communication between nodes. Note, the merge 
operation is not required in all computations involving 
mirrored data. In principle, it is needed if the cached 
data is modified and the modification needs to become 
globally available. 

Mirrored arrays differ from traditional replicated data 
schemes in two ways. First, mirrored arrays can be used 
in conjunction with distributed data and there are simple 
operations that support conversion back and forth from 
mirrored to distributed arrays. This allows developers 
maximum flexibility in incorporating mirrored arrays 
into their algorithms. Second, mirrored arrays are 
distributed within an SMP node (Figure 1). For systems 
with a large number of processors per node, e.g., 32 in 
the current generation IBM SP, this can result in 
significant distribution of the data. Even for systems 
with only 2 nodes per processor, this will result in an 
immediate savings of 50% over a conventional 



 

 

 

replicated data scheme. This can be partially offset by 
the fact that almost all array operations can be supported 
on both mirrored and distributed arrays, so that it is easy 
to develop code that can switch between using mirrored 
arrays and conventional distributed arrays, depending 
on problem size and the number of available processors. 

3. Interfaces and Implementation 
There are three significant components to implementing 
mirrored arrays. The first is the processor list that 
contains the mirrored array configuration, the second is 
incorporating recognition for this special type of array 
into a subset of functions that operate on arrays, and 
third is the addition of functions for merging mirrored 
arrays and an array copy that allows transfer of data 
between distributed and mirrored arrays. In our case, 
once this small group of functions has been adapted to 
properly deal with mirrored arrays, most of the 
remaining Global Array functions work with little or, in 
most cases, no modification. The processor list data 
structure is associated with every array, whether 
mirrored or not, and contains information about the 
mirrored array configuration. The most important 
elements of this data structure are maps between the 
local processor index on a node and the global processor 
index for the entire set of nodes. Currently only two 
processor lists are supported, the default processor list 
corresponding to a standard non-mirrored configuration 
of an array distributed across all processors in the 
system and the mirrored configuration containing a 
distributed copy of the array on each SMP node.  

Most of the remaining work involves extending the 
routines that create distributed arrays to account for the 
processor list, modifying some core functions to take 
account of the array mirroring, when it is present, and 

the creation of a merge operation that combines the 
contents of all mirrored arrays so that each copy is 
identical. The create functions must be modified so that 
the array is decomposed in blocks based on the number 
of processors on the SMP node, instead of the total 
number of processors for the job. The create functions 
also assign a processor list to each array. For the Global 
Arrays toolkit, the core task in implementing mirrored 
arrays was modifying all functions that locate data, or 
pointers to data, along with the basic communication 
operations. Examples of the higher level data location 
routines that need to be modified are functions that 
return the set of array indices representing the block of 
array data that is held by a particular processor and the 
call that returns the processor(s) that own either a 
particular piece of data or a block of data. For mirrored 
arrays, these functions only return processors that are on 
the same SMP node, even though the data is duplicated 
over many nodes. There are also functions that return 
pointers to the location in memory where a particular 
chunk of data begins. Once the modifications to these 
data location functions are complete, the 
communication operations work correctly on mirrored 
data. 

To convert between mirrored and distributed arrays, the 
copy function was extended to handle the situation were 
one array is mirrored and the other is distributed. The 
copy operation is unambiguous if copying from a 
distributed array to a mirrored array, but copying from a 
mirrored array to a distributed array is only well-defined 
if all copies of the mirrored array are the same. It is up 
to the programmer to ensure that the mirrored arrays are 
all the same in this case. The copy from a distributed 
array to a mirrored array is accomplished by first 
zeroing out the mirrored array and then copying the 

Figure 1: A two-dimensional array fully distributed, SMP mirrored, and replicated on two 4-way SMP cluster nodes 
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portion of the distributed array held on the SMP node to 
the corresponding portion of the mirrored array on the 
same node using shared memory copies. The full 
mirrored array can be recovered by then performing a 
merge operation. The copy from a mirrored array to a 
distributed array can be done very quickly, since only 
shared memory copies are required with no 
communication. Most of the other basic functions in the 
Global Array toolkit functioned for mirrored arrays 
without any alteration. 

 The only completely new functionality is the merge 
function, which does a sum of all instances of the 
mirrored array across all SMP nodes. This can be used 
to accumulate portions of a calculation that has been 
distributed across nodes into a single array. The merge 
operation uses the fact that if each node has the same 
number of processors, the data for each array will be 
laid out in the same way relative to the origin of the 
data. Since the data is distributed within each SMP 
node, there may be gaps in the data between the 
portions corresponding to the memory allocation of the 
array associated with each processor, but these gaps are 
reproduced on each SMP node. Furthermore, unless 
ghost cells are present the gaps typically are the size of 

only a few array elements and are guaranteed not to 
contain any useful data. Because of this, the merge 
operation can be performed using the following 
sequence of operations: 

Locate the origin of the data in memory on each SMP 
node. 

Find the total length of the region containing the array 
data on each SMP node (including gaps). 

Zero out the data in the gaps (This is to prevent 
accidental overflows due to uninitialized data in the 
gaps. The gaps do not contain useful data, so zeroing 
them is benign.) 

Perform a standard global sum across SMP nodes with 
only one process per node participating in the operation 
explicitly (in O(log(N)) rather than O(log(P)) time, 
where N is the number of cluster nodes and P is the 
number of processors) . 

This method can make use of the heavy optimization 
associated with global sums and results in an operation 
that scales like the logarithm of the number of SMP 
nodes. This is illustrated schematically in Figure 2. For 
the case in which the number of processors on each 
SMP node are not equal (expected to be a rarity in 

Node 0 Node 1 

Shared Memory Shared Memory 

Zero Out Gaps 

Global Sum 

(a) 

(b) 

(c) 

Gaps 

Figure 2. Schematic diagram of merge operation. (a) Origin of data in shared memory is located, size 
and location of gaps is determined, and total length of data calculated. (b) Data in gaps is zeroed out. 
(c) global sum of data across nodes is performed. 



 

 

 

actual practice and only included to protect against 
unnecessary failures) the merge operation is 
implemented by creating a temporary distributed array. 
Each processor then takes the portion of the mirrored 
array that it holds locally and uses a put-accumulate 
(atomic reduction) operation to accumulate it into the 
appropriate part of the distributed array. After the 
accumulate operations are completed, each processor 
then grabs the portion of the temporary array 
corresponding to the locally held chunk and copies back 
to local memory. The temporary array is then destroyed 
and each copy of the mirrored array contains the merged 
data. 

The interface for this operation is fairly simple and 
involves the extension/addition of only a few functions. 
The array creation functions were all extended to 
incorporate an additional parameter representing the 
processor list handle. Some additional functions were 
provided that return the handles for the mirrored 
processor list and the processor list for a standard 
distributed array.  The type of array created then 
depends on the handle that is provided in the array 
creation call. The only other addition is the merge call 
that sums all copies of the mirrored array together. 

4. Experimental Evaluation 
The SMP mirroring was evaluated using 
microbenchmarks to measure communication 
performance, a simple matrix multiplication kernel, and 
a computational chemistry application. The primary 
platform used in these experiments was a Linux cluster, 
based on HP RX2600 SMP nodes, each employing two 
1GHz Itanium-2 processors. Three networks were 
available: 100Mbit/s Ethernet, Myrinet-2000, and 
Quadrics Elan-3. In addition, the scientific application 
was also tested on a 4-way Alphaserver cluster with the 
Quadrics Elan-3 network. 

Communication Performance 
We measured performance of basic one-sided 
communication operations on distributed and mirrored 
arrays. The table below presents the performance for the 
get operation. With mirroring the performance is 
independent of the network used. The get operation 
reduces to the shared memory copy (note that when 
comparing to the copy bandwidth reported by the 
STREAM benchmark for the HP RX2600 a factor 2 
multiplier should be used). The latency corresponds to 
the overhead in the GA library that involves translation 
of array indices to the processor and memory location. 
Regarding the distributed case, the results correspond to 
performance of the elan_get operation (note that 
compatibility issues between the HP ZX1 chipset used 
in the RX2600 and the Elan-3 PCI card reduce 
bandwidth over what that card delivers on many IA32 
systems). For Ethernet and Myrinet, the results in the 

distributed case correspond to the performance of the 
ARMCI library that implements the missing get 
operation functionality using the client server approach 
[13,14].   

Table 1:Performance of get operation 

 Ethernet Myrinet Quadrics 

distributed 144 30.8 12 latency 
[µs] 

mirrored 3.58 

distributed 11.7 219 225 bandwidth 
[MB/s] 

mirrored 1560 

In figures 3-5, performance of the merge operation on 
Ethernet, Myrinet, and Quadrics is presented as a 
function of the number of processors and data size. As 
expected, for fixed message size the cost grows 
logarithmically as function of the number of processors. 
Moreover, the performance is directly related to the 
speed of the network (Ethernet being the slowest among 
three).  

Matrix Multiplication Example 
A basic test of the mirrored arrays is to see if they can 
improve matrix multiplies on a cluster with a relatively 
slow network. A typical matrix multiply across many 
nodes will require on the order of P0.5 separate messages 
per node, while a mirrored matrix multiply requires on 
the order of logP messages per node. If communication 
is slow relative to computation and memory is not a 
problem, it is expected that a considerable improvement 
in scalability can be achieved by replacing distributed 
matrix multiplies with mirrored matrix multiplies. If A, 
B, and C are mirrored arrays representing three 
matrices, then the matrix multiplication C = A·B can 
accomplished by dividing C between the SMP nodes 
such that each SMP node has an approximately equal 
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share and then doing the multiplications of the 
submatrices of A and B that yield the corresponding 
patch of C. Since A and B are duplicated on all the SMP 
nodes, this can be done with no communication. When 
the calculation of the local portion of C is completed on 
each node, the full matrix can be recovered by 
performing the merge operation. Note that within each 
node, the multiplication of the submatrices of A and B 
is distributed. 

Results from tests of matrix multiplication of two 
square 1025x1025 matrices are shown in Figures 6-8 for 
the Ethernet, Myrinet, and Quadrics network, 
respectively. For the tests shown here, both mirrored 
and distributed matrix multiplies involve the same 
amount of computation, so differences in timings are 
mainly due to different communication volumes for the 
two algorithms. Results for the Ethernet network 
(Figure 6) show that for low numbers of processors, the 
mirrored arrays substantially outperform the distributed 
matrix multiply, although for this network neither 
system exhibits scaling. Given the characteristics of the 
matrix multiplication and the size of matrices used, it 
was not expected that 100Mbit/s Ethernet network 
would be sufficient to satisfy communication needs for 
a system with two 4GFLOP/s processors on each cluster 
node and thus achieve scaling.  

On Ethernet, for larger numbers of processors, the 
performance of the distributed matrix multiply turns 
over and begins to decrease. By the time the system size 
reaches 32 processors both methods are about equal. 
The behavior of the distributed matrix multiply can be 
explained by noting that initially, there is a rapid 
increase in the number of large messages that must be 
sent so time required for the multiply increases rapidly. 
The increase in the number of message is offset at larger 
numbers of processors by the fact that the length of the 

messages is decreasing so the time required per message 
is going down, which is enough to offset the increase in 
the number of messages. The mirrored matrix multiply 
shows a monotonic increase in the amount of time 
required to perform the calculation and this is all due to 
the logarithmic increase in the amount of time required 
to perform the merge operation. Unlike the distributed 
matrix multiply, the size of the messages in the merge 
operation remains fixed with increasing number of 
processors. Furthermore, it is clear that for a slow 
network such as Ethernet, almost all the time required 
for the matrix multiply is consumed by communication. 
These results indicate that the mirrored array algorithm 
may substantially improve performance on low to 
intermediate numbers of processors. Clearly, there is no 
point in using larger numbers of processors for the 
matrix multiply alone, but if it is imbedded in a code 
where it is a significant bottleneck, then using the 
mirrored arrays would improve performance over an 
intermediate range of processors. 

The results for the Myrinet and Quadrics networks also 
show that the mirrored matrix multiply outperforms the 
distributed algorithm for low to intermediate numbers of 
processors. Both of these networks are substantially 
faster than Ethernet, so these results exhibit scaling. For 
Myrinet, the improvement of the mirrored algorithm is 
only marginally better than the distributed arrays for 
low numbers of processors and at 16 processors the two 
algorithms are substantially the same. At 32 processors, 
there appears to be another crossover in performance. 
Surprisingly, for Quadrics, which is the fastest network 
investigated, there is again a significant improvement in 
performance of the mirrored algorithm compared to the 
distributed algorithm. For this network, the mirrored 
array is faster even for 32 processors, which was the 
crossover point for the other two networks. These 
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results reinforce the conclusions reached for the 
Ethernet network, that the use of mirrored arrays can 
improve performance for intermediate numbers of 
processors.  

Scientific Application 
In recent years, Density-Functional Theory (DFT) has 
become the most widely used electronic-structure 
method for calculating the properties of molecules. The 
mirrored arrays functionality has been implemented in 
the Gaussian function-based DFT module of NWChem 
[15,16]. More precisely, it has been implemented in the 
evaluation of the matrix representation of Exchange-
Correlation (XC) potential on a numerical grid [17,18]. 
Prior to the current work, this quantity was evaluated 
using a distributed data approach, where the main arrays 
were distributed among the processing elements by 
using the GA library. 

This algorithm is very similar to the Hartree-Fock 
(a.k.a. SCF) algorithm, since both methods are 
characterized by the utilization of two main 2-
dimensional arrays: input density matrix (D) and output 
Kohn-Sham (K) matrix. The major steps of this 
algorithm be summarized as follows: 

1) Generate Density Matrix from a parallel matrix 
multiply into a distributed global array g_DM 

2) Read Density Matrix block from the array g_DM into 
local quantity Dkl using the get operation 

3) Evaluate the density function ρ on the grid points xq 
by multiplying the density matrix with  pairs of  basis 
functions χ 

ρ(xq) = ∑kl Dkl χk(xq) χl(xq) 

4) Evaluate the Exchange Correlation Potential 
Vxc[ρ(xq)]  on the grid points xq 

5) Numerical integration combining Vxc[ρ(xq)]  with the 
basis functions  and the grid weights wq to get the Kij 
matrix element  

Kij =  ∑q wq χi(xq) V
xc[ρ(xq)] χj(xq) 

6) Write the local quantity into the array g_K using the 
accumulate (atomic reduction) operation. 

Steps 1), 2) and 6) involve communication, whereas 
steps 3) to 5) can all be executed locally. 

The arrays g_DM and g_K are distributed by atomic 
blocks (as described in [19]), thereby reducing the 
amount of communication. However, the resulting 
algorithm is still sensitive to the communication 
bandwidth. The transformation of the quantities into 
mirrored arrays has allowed us to hide the 
communication latency occurring in steps 2) and 6). 
This process requires the following modifications. In 
step 1) the distributed array g_DM is now copied into a 
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mirrored array, eliminating the inter-node 
communications previously needed in step 2). g_K is 
now a mirrored array, therefore no inter-node 
communications are used in the accumulate operation 
(equivalent to daxpy within the SMP node), but after 
merging changes to g_K, a copy operation is needed to 
move the data into a distributed array to use it as input 
for the rest of code, which  uses distributed arrays.  

These modifications allowed us to achieve substantial 
performance improvements, as shown by the benchmark 
results reported in figures 10 and 11. Wall clock timings 
for the matrix evaluation of the XC potential (step 1 to 
6) of a zeolite fragment (SiOSi3) are reported as a 
function of the number of processors. We collected and 
analyzed trace data for interprocessor communication 
for that calculation. Figure 9 illustrates the profile of 
communication operations in steps 2) and 6) for that 
particular molecule. The profile indicates the presence 
of a broad distribution of messages of all sizes in these 
two steps and that increases in efficiency may be 
obtained by replacing these communications with 
shared memory copies using mirrored arrays. By 
looking at trace data we found that the communication 
operations in step 6) did not exhibit any particular 
locality pattern. Figure 10 shows results from runs on 
the Ethernet, Myrinet and Elan networks. The 
distributed data approach is responsible for the large gap 
in performance between slower (Ethernet) and faster 
(Elan and Myrinet) networks (top three curves in the 
plot). The mirroring of latency sensitive arrays helped 
reduce performance gap between slow and fast 
networks. It should be noted when comparing results 
shown in Figures 10 and 11, there is a change in the 
computational platforms since instead of 2-way SMP 
system, we are now dealing with a 4-way SMP; this 
hardware configuration shows similar benefits from the 
mirrored arrays algorithm as in figure 10. 

 
Figure 10: DFT SiOSi3 benchmark using mirrored and 
fully distributed approach on a 1GHZ Itanium2 dual 
processor system with three different interconnects: 
Ethernet, Myrinet, or Elan-3 (Quadrics) 

 
Figure 11: DFT SiOSi3 benchmark on a 1GHZ EV68 
Alpha 4-way system using the Elan-3 (Quadrics) and 
Ethernet interconnects. 

6. Conclusions 
The results presented in this paper indicate that 
mirroring can be used to substantially improve 
performance for some algorithms running on clusters of 
SMP nodes. Although originally targeted for SMP 
nodes connected by relatively slow networks the timing 
data obtained for the matrix multiply and DFT 
calculations suggest that significant performance gains 
can be achieved even when the network is fast, provided 
enough memory is available to use mirroring. 

The timing data also indicate that the merge operation 
remains a significant bottleneck to achieving very high 
levels of performance. The current merge operation is 
based on a global sum over all the mirrored data and for 
general data distributions within the mirrored arrays this 
may be the optimal method for merging the data. 
However, this has the disadvantage that it is moving all 
the data contained in the mirrored arrays at each step in 

0

1000

2000

3000

4000

5000

6000

8 24 48 72 14
4

20
0

28
8

60
0

76
0

18
00

22
80

28
88

bytes

n
u

m
b

er
 o

f 
o

p
er

at
io

n
s

get
acc

Figure 9: Communication profile in the benchmark 
illustrating the number operations for specific message 
size in a four processors' run.



 

 

 

the global sum, which can be wasteful in cases such as 
the matrix multiply. For this case, most of the data in 
the product matrix before the merge is initialized to zero 
and additional savings in time could be achieved only 
moving nonzero data. The same algorithm could also be 
used to improve the performance of the copy from 
distributed to mirrored arrays, which contains a similar 
embedded merge operation. Future work will focus on 
developing 1) more sophisticated variations of the 
merge operation that can exploit these potential savings 
and 2) developing a more storage efficient scheme for 
caching the data. 
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